1

Проведен анализ компьютерных обучающих систем, выявлены основные проблемы в их построении. Основной проблемой является построение модели обучаемого, существует большое количество данных моделей, однако они слабо учитывают психофизиологические особенности и характеристики обучаемого и, как правило, не используются при формировании структуры образовательных ресурсов и их содержания, что снижает эффективность применения компьютерных обучающих систем. Построение моделей предлагается строить в виде семантической сети, которая отличается от других моделей наглядностью и простотой представления знаний, наличием механизмов их структуризации и соответствием современным представлениям об организации памяти человека. Создание и совершенствование компьютеров привело и продолжает приводить к созданию новых технологий в различных сферах научной и практической деятельности. Несмотря на бурное развитие в настоящее время компьютерных обучающих систем, существует масса проблем, связанных как с их разработкой, так и с внедрением и эффективностью использования данных обучающих систем. Основной проблемой при создании адаптивных обучающих систем является сложность в построении такой программной среды, которая могла бы «понять» человека.

компьютер

обучение

обучаемый

образование

алгоритм

1. Башмаков А.И., Башмаков И.А. Разработка компьютерных учебников и обучающих систем. – М.: Филинъ. – 2003. – 430с.

2. Брусиловский П.Л. Построение и использование моделей обучаемого в интеллектуальных обучающих системах // Известия РАН. Техническая кибернетика. – 1992. – № 5. – С. 97–119.

3. Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. –СПб.: Питер, 2000. – 384 с.

4. Голенков В.В., Емельянов В.В., Тарасов В.Б. Виртуальные кафедры и интеллектуальные обучающие системы // Новости искусственного интеллекта. – 2001. – № 4. – С. 3–13.

5. Петрушин В.А. Обучающие системы: архитектура и методы реализации (обзор) // Известия РАН. Техническая кибернетика. – 1993. – № 2. – С. 164–190.

6. Петрушин В.А. Экспертно-обучающие системы. – Киев: Наукова Думка, 1992. – С. 196.

7. Пименов В. И. Алгоритмическое обеспечение инструментального комплекса для формирования знаний о технологических процессах // Известия вузов. Приборостроение. – 2009. – № 1. – С. 3–9.

8. Рыбина Г.В. Обучающие интегрированные экспертные системы: некоторые итоги и перспективы/ Искусственный интеллект и принятие решений. – 2008. – № 1. – С. 22–46.

9. Фролов Ю.В., Махотин Д.А. Компетентностная модель как основа оценки качества подготовки специалистов // Высшее образование сегодня. – 2004. – № 8. – С. 34–41.

Создание и совершенствование компьютеров привело и продолжает приводить к созданию новых технологий в различных сферах научной и практической деятельности. Одной из таких сфер стало образование - процесс передачи систематизированных знаний, навыков и умений от одного поколения к другому. Будучи само по себе мощной информационной сферой, которая владеет опытом использования различных классических (не компьютерных) информационных систем, образование быстро откликнулось на возможности современной техники.

На наших глазах возникают нетрадиционные информационные системы, связанные с обучением; такие системы естественно называть информационно-обучающими.

Автоматизированные обучающие системы - это системы, помогающие осваивать новый материал, производящие контроль знаний, помогающие преподавателям готовить учебный материал .

Цель исследования: провести анализ компьютерных обучающих систем, выявить основные проблемы в их построении, разработать подмодели компьютерной обучающей системы для повышения квалификации.

Современные исследования в области применения компьютеров в обучении развиваются в основном в рамках нескольких основных направлений, которые можно обозначить следующим образом: интеллектуальные обучающие системы; учебные мультимедиа и гипермедиа; учебные среды, микромиры и моделирование; использование компьютерных сетей в образовании; новые технологии для обучения конкретным дисциплинам.

Несмотря на бурное развитие в настоящее время компьютерных обучающих систем, существует масса проблем, связанных как с их разработкой, так и с внедрением и эффективностью использования данных обучающих систем.

Рассматривая проблему разработки компьютерных систем обучения в целом, нельзя не упомянуть о следующей важной особенности, подмеченной В.Л. Стефанюком , - это выделение двух основных процессов: обучение как learning и обучение как tutoring (рисунок).

Классификация интеллектуальных систем компьютерного обучения

Направление learning (обучающиеся системы) - это самообучение, обучение с учителем, адаптация, самоорганизация и т.д., поэтому при разработке обучающих систем исследуются модели, демонстрирующие способности адаптации к окружающей среде путем накопления информации. Направление tutoring (обучающие системы) тесным образом связано с вопросами «кого учить» (модель обучаемого), как и «чему учить» (модель обучения) и даже «зачем учить», т.е. здесь исследуются модели передачи информации и знаний от учителя с помощью компьютера.

Поскольку в области педагогики нет общепринятых теорий и алгоритмов обучения, нет формальных моделей обучаемого, обучения, учебных воздействий, объяснений и т.д., то надежды возлагаются в основном на логико-лингвистические модели. Взаимопроникновение интеграционных процессов искусственного интеллекта и педагогики выразилось в интеллектуальных обучающих системах, а также в обучающих интегрированных экспертных системах, в необходимости введения дополнительных средств, позволяющих поддерживать модель обучаемого, в соответствии с которой педагог на стратегическом уровне определяет текущую подцель обучения, а также средств, реализующих конкретную модель обучения в виде совокупности учебных воздействий на тактическом уровне и обеспечивающих преподавателю возможность наблюдения за действиями обучаемого и оказания ему необходимой помощи .

Г.А. Атанов в книге «Деятельностный подход в обучении» пишет о том, что моделирование знаний об обучаемом преследует три основные цели - установление того, «каков он есть», «каким его хотим видеть» и «каким он может стать». Иногда в нормативную модель обучаемого включают предметное знание и умение по конкретной дисциплине/курсу или рассматривают пятикомпонентную предметную модель как часть нормативной модели и т.п.

Основной проблемой при создании адаптивных обучающих систем является сложность в построении тако й программной среды, которая могла бы «понять» человека . Поэтому большинство разработок в данной области строится на создании моделей обучаемых с последующим описанием и построением всевозможных гипотез (работы А.Г. Гейна, Б.С. Гершунского, В.П. Зинченко, А.В. Осина, С.В. Панюковой, И.В. Роберт, и др.). Моделям присваивается определенный набор характеристик, которые впоследствии влияют непосредственно на построение самой обучающей системы. Существует достаточно большое количество моделей обучаемого, однако они слабо учитывают психофизиологические особенности и характеристики обучаемого и, как правило, не используются при формировании структуры образовательных ресурсов и их содержания, что снижает эффективность применения компьютерных обучающих систем .

С этой точки зрения, модель обучаемого и соответственно реализуемая на базе применения технологий адаптации структура данных систем, должны учитывать модальность обучаемого; тип его темперамента; текущее психо-эмоциональное состояние обучаемого. Особый интерес представляет определение текущего психо-эмоционального состояния обучаемого. В качестве реальных инструментов, определяющих психо-эмоциональное состояние, можно выделить две большие группы:

1. Тесты и тестирующие программы.

2. Специальные аппараты или системы.

В современных работах по компьютерным обучающим системам практически отсутствуют исследования, связанные с формированием модели компетенций обучаемого, отражающей его способности применять знания и личностные качества для успешной деятельности в конкретной профессиональной области, что является новым процессом в рамках создания и использования данных систем. Эта модель может рассматриваться как новый динамический компонент модели обучаемого, тесно связанный, с одной стороны, с психологическим портретом личности, а с другой - отражающий результаты использования конкретных обучающих воздействий.

Существуют различные подходы к моделированию содержания образования как сложной системы, способы представления семантической информации, проблемы, возникающие при разработке систем, основанных на знаниях, и наиболее распространённые модели их представления. Для представления знаний в интеллектуальных системах существуют различные способы, наличие которых вызвано, в первую очередь, стремлением с наибольшей эффективностью представить знания, относящиеся к различным предметным областям .

Способ представления знаний в большинстве случаев реализуется с помощью соответствующей модели. Основные типы моделей представления знаний делятся на логические (формальные), эвристические (формализованные) и смешанные.

На основе системного анализа интеллектуальных моделей представления знаний в качестве основного средства решения указанных дидактических задач в области информатики выбрана модель в виде семантической сети, которая отличается от других моделей наглядностью и простотой представления знаний, наличием механизмов их структуризации и соответствием современным представлениям об организации памяти человека.

Проделав системный анализ интеллектуальных моделей, можно сделать вывод о том, что в модель компьютерной обучающей системы для повышения квалификации необходимо включить построение трех следующих подмоделей: модель обучаемого (М1), модель процесса обучения (М2), модель объяснения (МЗ) .

Модель М1 включает следующие компоненты: в простейшем случае - учетную информацию об обучаемом, а в более сложных - психологический портрет личности обучаемого (Ph); начальный уровень знаний и умений обучаемого (); заключительный уровень знаний и умений обучаемого (); алгоритмы выявления уровней знаний и умений обучаемого (А); алгоритмы психологического тестирования для выявления личностных характеристик, на основании которых формируется психологический портрет личности обучаемого (АPh). Под термином «знания», в соответствии с точкой зрения О.И. Ларичева, понимается теоретическая подготовленность обучаемого (декларативные знания), а под термином «умения» - умение применять теорию при решении практических задач (процедурные знания) .

Для реализации алгоритмов А и АPh при формировании модели М1 использован следующий набор процедур тестирования обучаемого: процедура ввода исходной информации (контрольных вопросов, вектора правильных ответов и весовых коэффициентов по каждому вопросу); процедура вывода вопросов и вариантов ответов в процессе проведения контроля знаний; процедура формирования оценки; процедура вычисления итоговой оценки. Модель М1 содержит информацию о состоянии знаний обучаемого (модели , ) ─ как общие, интегрированные характеристики, так и те, которые отражают усвоение им текущего учебного материала.

В общем виде модель обучаемого представляет собой конечный ориентированный граф, который может быть описан в виде Мобучаемого = , где V = - множество вершин, которые в свою очередь делятся на - множество изучаемых понятий, n - количество изучаемых понятий, элемент , i = 1, …, n, где N - изучаемое понятие; Т = (0, 1), принимает значения знает/не знает; W = (0, ..., 10) - вес вершины; - множество умений, относящихся к данной модели, m - количество соответствующих умений, элемент , j = 1, …, m, где N -изучаемое умение; Т = (0, 1), принимает значения умеет/не умеет; W = (0, ..., 10) - вес вершины; U = {uj} = , j = 1, …, m - множество связей между вершинами, где Vk - родительская вершина; Vl - дочерняя вершина; R = {Rz} - тип связи; z = 1, …, Z.

В настоящее время разработана библиотека оценочных алгоритмов, гибко использующихся при проведении тестирования обучаемых в зависимости от специфики курса/дисциплины и контингента обучаемых. Например, эффективно применяется метод, основанный на сбалансированной оценке Т. Робертса для вопросов закрытого типа и дополненный возможностью произвольного задания степени строгости оценивания, а также взвешиванием вопросов коэффициентами сложности, получаемыми на основе экспертной оценки. Под сбалансированностью в данном случае понимается независимость математического ожидания оценки от числа правильных и неправильных ответов, полученных на этот вопрос случайным образом.

Для формирования модели обучаемого М1 используется эталонная модель Ме, соответствующая уровню знаний преподавателя о конкретном разделе изучаемого курса, с которой будут сравниваться получаемые на этапе построения М1 результаты. Формально эталонная модель Ме, как и модель обучаемого, представляет собой ориентированный граф, т.е.совокупность вида Ме = .

Динамическое построение модели обучаемого М1 осуществляется путем сравнения текущей М1 с предварительно построенной преподавателем эталонной моделью Ме. Важно отметить, что на этом этапе наряду с выявлением уровня знаний и умений осуществляется построение психологического портрета личности.

Модель процесса обучения содержит знания о планировании и организации (проектировании) процесса обучения, общих и частных методиках обучения, поэтому предложенная модель М2 включает следующие компоненты: совокупность моделей М1; совокупность стратегий обучения и обучающих воздействий; функцию выбора стратегий обучения или генерации стратегий обучения в зависимости от входной модели М1.

Отметим при этом, что управление обучением осуществляется на основе некоторого плана, который либо выбирается из библиотеки стратегий обучения, либо генерируется автоматически на основе параметров М1, причем каждая стратегия обучения состоит из определенной последовательности учебных воздействий.

Теоретико-множественное описание адаптивной модели М2 представляет собой совокупность вида М2 = , где М1 = {М11, …, М1n} - множество текущих моделей обучаемого; S = {S1, …, Sn} - множество стратегий обучения Si, i = 1, …, m, в виде упорядоченных подмножеств множества обучающих воздействий для той или иной модели обучаемого; I = {I1, …, Iz} - множество обучающих воздействий Ij, где Ij = {tkil} tk - тип обучающего воздействия, а il - содержание воздействия, j = 1, …, z; k = 1, …, c; l = 1, …, v; F - функции (алгоритмы) генерации стратегий обучения в зависимости от входной модели обучаемого, т.е. M2 = F(M1, Mе, I), где Мe - эталонная модель курса (дисциплины), заданная преподавателем.

Модель объяснения (М3) разрабатывается исходя из того, что существующие способы реализации методов объяснения в традиционных компьютерных системах не в полной степени удовлетворяют целям обучения, в частности, моделям Ml и М2, поэтому модель М3, ориентированная на продукционные модели представления знаний, включает следующие компоненты:

М3G - целевые процедуры, обеспечивающие объяснение хода решения задачи путем генерации на экране дисплея текстов объяснений, содержащих описания правил, использованных в выводе (записанные объяснения), а также локализацию ошибок обучаемого при решении текущей задачи;

М3D - процедуры детальности объяснения, позволяющие в зависимости от уровня знаний обучаемого визуально иллюстрировать ход решения задачи с разной степенью детализации;

М3A - алгоритмы интерпретации результатов процессов выявления умений обучаемого реализовывать механизмы прямого/обратного вывода, включая возможность предоставления дополнительной информации об объектах проблемной области и их связях.

Модели М1, М2, М3 полностью специфицируют типовую задачу обучения с помощью конкретных процедур и функций, а также указывают на наличие определенных взаимосвязей. Другими словами можно сказать, что для успешной реализации и функционирования компьютерной системы повышения квалификации специалистов необходимо, чтобы в состав ее модели входили следующие функциональные возможности:

Построение модели обучаемого (с учетом психологического портрета личности, ее образовательного запроса и уровня первоначальных знаний) и эталонной модели курса;

Построение модели процесса обучения, сущность которой заключается в динамической модификации стратегии обучения в соответствии с текущей моделью обучаемого и последующей генерации совокупности обучающих воздействий, наиболее эффективных на данном этапе обучения с учетом психологических особенностей обучаемых;

Контроль деятельности обучаемого и генерация управляющих решений для соответствующей корректировки действий обучаемого с целью достижения им поставленных целей обучения;

Построение модели объяснения для оценки логики принятия решений, результатов вычислений, объяснение неправильной альтернативы или этапа решения задачи.

Рецензенты:

Карелин В.П., д.т.н., профессор, заведующий кафедрой математики и информатики НОУ ВПО «Таганрогский институт управления и экономики» (ТИУ и Э), г. Таганрог;

Кирьянов Б.Ф., д.т.н., профессор кафедры прикладной математики и информатики, ФГБОУ ВПО «Новгородский государственный университет им. Ярослава Мудрого», г. Великий Новгород;

Антонов А.В., д.т.н., профессор, декан факультета «Кибернетика» Обнинского института атомной энергетики Национального исследовательского ядерного университета МИФИ Министерства образования и науки Российской Федерации, г. Обнинск.

Работа поступила в редакцию 30.10.2013.

Библиографическая ссылка

Лященко Н.И. АНАЛИЗ МОДЕЛЕЙ КОМПЬЮТЕРНЫХ ОБУЧАЮЩИХ СИСТЕМ. ПОСТРОЕНИЕ ПОДМОДЕЛЕЙ В КОМПЬЮТЕРНОЙ СИСТЕМЕ ПОВЫШЕНИЯ КВАЛИФИКАЦИИ СПЕЦИАЛИСТОВ // Фундаментальные исследования. – 2013. – № 10-10. – С. 2153-2157;
URL: http://fundamental-research.ru/ru/article/view?id=32726 (дата обращения: 19.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Существует большое многообразие компьютерных систем обучения по функциональному назначению и техническому исполнению. Однако общим для всех является их состав: любая компьютерная система содержит в комплексе как аппаратные, так и программные средства (схема 4). Для реализации КО требуется две части: информационно-вычислительная техника (аппаратные средства) и программное обеспечение - набор программ разного назначения.
Программное обеспечение - мозг системы. Это управляющая среда, которая в зависимости от возникающей ситуации адекватно реагирует на действия обучаемого. Компьютерная программа учебного назначения - это любое программное средство, специально разработанное для применения в обучении. Выше были охарактеризованы основные типы программ по их дидактическому назначению.
Уровень компьютерной системы обучения в равной степени определяется не только программой, но и аппаратной составляющей. Под аппаратурой понимается ЭВМ как совокупность оборудования и средств, обеспечивающих ввод-вывод, модификацию текстовой, графической, аудио- и видеоинформации. Основными компонентами аппаратуры являются тип процессора, тип шины (магистрали), размер и характеристики памяти, параметры внешних носителей информации, звуковые адаптеры, видеоадаптеры, периферия.
В настоящее время в развитии аппаратных средств открылось «второе дыхание»: появляются принципиально новая компьютерная техника, различные конфигурации технических и компьютерных средств. Одним из перспективных направлений в этом плане является использование компьютера как универсального комплексного технического средства, способного выполнять функции книги, пишущей машинки, магнитофона, радио, кино, видеостенки, видеодоски и др.
ЭВМ, которые используются в учебном процессе, должны быть надежными и обеспечивать решение всех задач, встречающихся в учебных курсах. Они могут иметь разное быстродействие и память, но должны обеспечивать высокую степень готовности. Последнее чрезвычайно важно, так как даже частичный отказ может привести к срыву учебного процесса.
Интенсивное развитие микроэлектроники привело к значительному расширению возможностей и одновременному удешевлению вычислительной техники. Это обеспечивает ее повсеместное распространение. Теперь персональные компьютеры стали действительно персональными в полном смысле этого слова. Они уверенно входят в школьную и повседневную жизнь, как когда-то радио и телевизоры.
Можно назвать несколько причин успеха персональных компьютеров. Одна из главных - простота использования, обеспеченная с помощью диалогового способа взаимодействия с компьютером, удобных и понятных интерфейсов программ (меню, подсказки, «помощь» и т.д.). Возможность индивидуального взаимодействия с компьютером без каких-либо посредников и ограничений - это другая причина. В качестве «технических» причин выделим следующие. Во-первых, относительно высокие возможности по переработке информации (типичная скорость - несколько десятков миллионов операций в секунду, емкость оперативной памяти - от нескольких Мбайт до сотен Мбайт, емкость жестких дисков - до десятков Гбайт). Во-вторых, высокая надежность и простота ремонта, которые основаны на интеграции компонентов компьютера. В-третьих, возможность расширения и адаптации к особенностям применения компьютеров: один и тот же компьютер может быть оснащен различными периферийными устройствами и мощными системами для разработки нового программного обеспечения.
Нынешнее состояние компьютерных систем обучения характеризуется противоречивыми тенденциями. С одной стороны, колоссальный рост числа компьютеров, используемых в обучении, а с другой- их несовместимость. Например, приобретая ту или иную модель компьютера, школа не всегда может воспользоваться программным обеспечением, предназначенным для других моделей. Современное состояние компьютерного обучения имеет большой разрыв в качестве обучающих программ; рынок наводнен примитивными программами, которые не повышают эффективность обучения, а нередко дают и отрицательный результат.
Развитие техники идет колоссальными темпами; появляются разновидности компьютерного обучения с привлечением автоматизированных обучающих систем (АОС). Работа над системами ведется во многих научно-педагогических центрах.
Следует различать компьютерные системы обучения автономного режима и сетевые (дистантные).
Когда обучаемый расположен в непосредственной близости от компьютера как источника знаний - в этом случае говорят о системе обучения, работающей в автономном режиме. Совершенно новые перспективы открывают для КО телекоммуникационные сети и интеллектуальные обучающие системы (ИОС), Объединение таких систем и сетей уже сегодня позволяет создавать как локальные вычислительные сети (ЛВС), так и глобальные системы дистанционного образования.
Основной мотивацией усилий по разработке ИОС является желание ускорить процесс обучения за счет целенаправленного, методически грамотного курса, использующего современные достижения педагогов, и неявного стремления снизить затраты на образование, сделать его унифицированным и независимым от квалификации педагога.
Существует большое разнообразие ЛВС, построенных по различным принципам и структурам. Они позволяют коллективно использовать периферийное оборудование (принтеры, плоттеры, жесткие диски большой емкости), дорогостоящее лицензионное, а также программное обеспечение. Но не эти преимущества являются первостепенными. Основное - необходимость рационального использования аппаратных средств. Имеющийся парк персональных компьютеров, как правило, пополняется лишь единицами новых. В результате оказывается большое их разнообразие, имеющее различные графические и другие возможности. ЛВС позволяет с минимальными затратами модернизировать устаревшие компьютеры, а следовательно, более экономно расходовать средства.
Самое значительное преимущество ЛВС заключается в возможности использования практически неограниченного объема информации глобальной компьютерной сети под названием INTERNET (ИНТЕРНЕТ). ИНТЕРНЕТ - это уникальное средство доступа к информации на мировом уровне по разным сферам деятельности человека- экономике, технике, науке, культуре, образовании. База данных ИНТЕРНЕТА используется для ознакомления с новейшими зарубежными публикациями, каталогами фирм-производителей современной компьютерной продукции и т.д., что особенно актуально в условиях сокращающегося потока традиционных носителей информации. ИНТЕРНЕТ - это перспективное средство дистанционного образования.
В настоящее время интенсивно разрабатываются автоматизированные заочные (дистантные) компьютерные системы обучения, в том числе и на основе ИНТЕРНЕТА. Изучение наук в этом случае реализуется посредством общения обучающегося заочно, через компьютерную сеть не только с компьютером, но и с преподавателем, напрвляющим учебный процесс. Здесь успех в значительной степени зависит от модератора (преподавателя, курирующего учебный процесс). Он обеспечивает успешное начало, обучение и помощь на начальной стадии, поддержку в разработке, развитии и завершении темы.
Сетевые компьютерные обучающие системы позволяют индивидуальным пользователям, находящимся на своих рабочих местах или дома, иметь доступ не только к мощным академическим сетям, но и подсоединяться к новейшим сетевым (мультимедийным) средствам обучения. Производители последних разрабатывают продукт с высокой степенью стандартизации и совместимости, распространения его в масштабах всей национальной системы образовании. Современные локальные академические сети (ЛВС и другие) подключаются к национальным. Местные академические сети посредством баз данных и баз знаний обеспечивают широкий спектр учебного материала и учебных пособий.
Укажем некоторые приоритетные направления в развитии компьютерных сетей:
1) локальные и региональные сети ЭВМ;
2) электронная почта;
3) телеконференции;
4) электронные журналы;
5) распределение базы данных;
6) электронные библиотеки;
7) экспертные системы;
8) настольные издательские системы;
9) электронные учебники;
10) обучающие системы на основе мультимедиаподхода (при лекционной форме обучения) и др.
Аппаратные и программные средства в компьютерных системах обучения тесно взаимосвязаны между собой, об этом можно судить по, признаку классификации обучающих программ на три уровня. При работе с программами первого уровня обучаемый читает текст на экране монитора, который прерывается контрольными вопросами. На них нужно ответить, выбрав правильный ответ из нескольких предложенных.
Учебные программы второго уровня уже предполагают возможность использования двухмерной графики, простого звукового ряда, логического ответа обучаемого. В этом случае формы представления информации на экране - текстовая и графическая.
Учебные программы третьего уровня представляют информацию в трехмерной компьютерной графике, со звуко- и видеорядом. Одновременное использование различных средств представления информации и обозначают термином «мультимедиа». Информация на компьютере может быть представлена в виде печатного текста, озвученного текста, таблицы, графика, диаграммы, карты, фотографии, картины, мультипликационного или видеофрагмента. Разнообразие форм представления и неограниченные объемы информации, возможность многократного обращения и повторения одного и того же материала, установления индивидуального темпа работы, «дружелюбная» форма общения и другие характеристики компьютера делают его незаменимым средством обучения по любой дисциплине.
Опыт применения мультимедиа в системе образования выявил главные преимущества этой системы, которые развиваются по мере совершенствования как аппаратных, так и программных средств. Они состоят в наличии точек разветвления в программе, что позволяет обучаемым регулировать процесс восприятия информации, либо вернуться назад для повторения материала, либо перейти к любой другой точке разветвления. Чем больше таких точек, тем выше интерактивность программы и ее гибкость в процессе обучения. Другое важнейшее преимущество - аудио-сопровождение (стерео- и квадро) учебной информации. Еще более эффективным является сочетание аудиокомментариев с видеоинформацией или анимацией. Значительно повышает качество восприятия информации музыкальное сопровождение учебного процесса.
По мнению ведущих экспертов в этой области, системы обучения на мультимедиа совершенствуются в двух направлениях: как по линии программных средств, так и аппаратных. Уже сейчас многие производители персональных компьютеров включают в конфигурацию как стандартную периферию голосовые синтезаторы и всевозможные адаптеры.
Поток мультимедийных материалов, имеющихся сейчас в ИНТЕРНЕТЕ, становится все более мощным, эффективным средством образования. ИНТЕРНЕТ дает шанс общаться через мировую компьютерную сеть, обсуждать результаты научного поиска на постоянно действующих семинарах, проводимых периодически конференциях без выезда на место их проведения и многое другое. Огромный опыт применения мультимедиа накоплен в западной системе образования.
Однако существуют проблемы, которые в определенной мере препятствуют прогрессу в этой области в ряде стран, в том числе и в Беларуси. Доступ в ИНТЕРНЕТ все еще очень дорог. Достаточно сложно использовать модем для того, чтобы связаться с удаленным сервером, компьютер не подключен в локальную сеть. Для того, чтобы загрузить графику, аудио- и видеофайлы, требуется высокоскоростной компьютер и сеть. Те, у кого компьютеры устаревшей конфигурации, могут испытывать неудобства в работе из-за того, что загрузка файлов, доступ к ИНТЕРНЕТ осуществляются очень медленно. Работа в системе Web обычно требует большого количества памяти ЭВМ и некоторые компьютеры приходится модернизировать или заменять для того, чтобы пользоваться нужными программами (например, Mosaic или Netscape).
Компьютерные технологии развиваются очень быстро и, видимо, в скором времени как компьютеры, так и программное обеспечение станут достаточно дешевыми и скорость передачи информации в сети значительно увеличится. Все это будет способствовать беспрепятственному доступу к международной сети преподавателей, студентов, школьников и, в результате, - более эффективному их обучению.

1

Проникновение информационных технологий в область обучения приводит к расширению понятийной базы, как за счет образования новых понятий, так и за счет употребления старых понятий в новом смысловом значении. Необходимость изменения смыслового содержания некоторых понятий кибернетики связано, прежде всего, с тем, что задачи управления обучением нельзя рассматривать в отрыве от состояния обучаемого. С этой точки зрения выстраиваемое в обучающих системах информационное поле и множество участников учебного процесса образуют единое целое - «самосогласованную систему». Это понятие заимствовано нами из физики, как и многие другие понятия, уже нашедшие применение в описании автоматизированных обучающих систем, не случайно. На наш взгляд между задачами автоматизации обучения и методами описания, например, квантовой системы много общего. При этом содержание понятия «кванта информации» имеет гораздо больше общего с понятием энергетического кванта, чем это принято считать.

С точки зрения информационных технологий задачу обучения можно рассматривать как перевод системы в новое качественное состояние путем конечного числа количественных преобразований.

При разработке автоматизированных обучающих систем обрабатываемая компьютером и предлагаемая пользователю информация должна оцениваться, прежде всего, с точки зрения восприятия этой информации сознанием как информации полезной для формирования личности. Иначе говоря, любая обучающая система (не обязательно автоматизированная) представляет собой семантическую информационную систему (СИС) . В связи с этим целесообразным, на наш взгляд, является выделение таких кибернетических элементов, которые принято называть информационными потоками , уточнив, однако, это понятия в применении к СИС.

Под семантическим информационным потоком в обучении (СИПО) мы будем понимать такую последовательность изменений наших знаний, которая только во всей своей совокупности воспринимается сознанием как определенный шаг в развитии личности, т. е. обеспечивает переход личности в новое качество.

На вход обучающей системы поступает информация, организованная по принципу «элементарного многообразия»: множество бит информации равномерно обрабатывается в течение времени. Биты информации, задаваемые на числовой оси x и такты обработки прерываний, задаваемые генератором можно рассматривать как координаты некоторого «пространственно-временного» многообразия {x, t} - однородного пространства экранных событий.

Обработка информации с целью обучения - это нарушение однородности многообразия, превращение его в некое, возможно метрическое, пространство. Чтобы понять, какие именно изменения происходят в непрерывном потоке информации в процессе ее подготовки к восприятию с экрана компьютерного монитора, рассмотрим основные операции над информационным пространством, диктуемые задачами обучения.

1. Разметка информационного пространства - разделение информационного пространства на СИПО.

2. Форматирование СИПО - задание единичного элемента, единицы измерения информационного потока по отношению к процессу обучения.

3. Квантование СИПО. Под квантованием СИПО мы понимаем его разложение на некоторые базисные составляющие, отвечающие заранее заданным свойствам, зависящим от особенностей компьютерного представления информации, задач обучения, особенностей восприятия. При этом саму процедуру квантования целесообразно разложить на две составляющие:

  1. последовательное квантование - разбиение на части "длины" информационного потока (long-квантование);
  2. параллельное квантование - расслоение отдельных long-квантов на слои - flaky-кванты по пути углубления представления об элементе информационного потока.

4. Распределение СИПО. В процессе обучения потребность в различных квантах различна, и это обстоятельство заставляет решать задачу распределения информационного потока по области компьютерного представления знаний (строки, фреймы, окна).

5. Конкатенация (соединение) СИПО. Содержание термина аналогично его смыслу в программировании. Речь идет как о соединении отдельных слоев long-квантов одного и того же СИПО, так и о соединении по некоторым квантам (как long, так и flaky) различных СИПО. Как правило, конкатенация внутри одного и того же СИПО обусловлена использованием различными long-квантами одних и тех же flaky-квантов.

6. Шлюзование информационного потока - приостановка потока новой информации для корректировки базовых знаний, необходимых для понимания дальнейших рассуждений.

7. Слияние информационных потоков - образование нового информационного потока на основании результатов, полученных в нескольких независимых СИПО.

Задачу квантования СИПО полезно уточнить, исходя из принятого в физике понимания кванта энергии. Под квантом энергии в физике (квантом электромагнитного поля) понимается энергетическая порция, которая излучается, перемещается в пространстве и поглощается только целиком, как единое целое - корпускула. При этом свойство поглощения кванта зависит от соотношения между энергией кванта и возможностями поглощающей системы, т.е. энергия кванта, поглощаемого системой, есть свойство не только кванта, но и поглощающей системы. В существующей трактовке кванта информации это основное свойство энергетического кванта отсутствует вообще. Но именно это свойство позволяет говорить о квантовой системе. Обучаемые, помещенные в информационное пространство, представляют собой многоуровневую систему, требующую для своего качественного изменения усвоение различного количества информации, т.е. квантов различной информационной энергии. С этой точки зрения экранная страница текста, формула, рисунок не могут рассматриваться как инвариантные понятия квантов информационного потока. В соответствии с понятием семантической информации квантом информации следует считать только такую совокупность данных, которая обязательно изменяет состояние наших знаний, а с точки зрения обучения изменить состояние знаний может только усваиваемая порция информации. Усвоена же порция информации может быть только тогда, когда все данные из этой порции понятны обучаемому. Таким образом, даже при одинаковой предыстории обучения для одного может быть понятна формула без дополнительных пояснений, для другого - с дополнительными пояснениями, для третьего необходимо разъяснение терминологии, используемой в пояснении. Такое понимание кванта информации значительно сближает его с понятием кванта энергии. Очевидно, что при определенных размерах информационного кванта не имеет смысла вообще говорить о возможности его поглощения, т.е. усвоения.

Следует, однако, отметить, что человеку как элементу учебного процесса свойственно самому разбивать информацию на кванты с целью ее полного усвоения. При этом ему приходится решать дополнительные задачи сортировки имеющейся информации и поиска недостающей информации. Решение именно этих задач и следует возлагать на автоматизированные обучающие системы. Рассмотренное выше уточнение семантических операций над семантической информацией, исходя из задач обучения, позволяет на наш взгляд лучше организовать процесс подготовки исходного материала для его использования в автоматизированных обучающих системах.

Литература

  1. Горовенко Л.А. Построение информационно-образовательной среды с элементами искусственного интеллекта: Дис.... канд. техн. наук. Краснодар, 2002. - 167 с.
  2. Соломатин Н.М. Информационные семантические системы. - М.: Высшая школа, 1989. - 127с.

Библиографическая ссылка

Рыкова Е.В., Рыков В.Т. КОМПЬЮТЕРНЫЕ ОБУЧАЮЩИЕ СИСТЕМЫ И ИНФОРМАЦИОННЫЕ ПОТОКИ // Успехи современного естествознания. – 2004. – № 3. – С. 87-88;
URL: http://natural-sciences.ru/ru/article/view?id=12424 (дата обращения: 19.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Как правило, элементы программируемого обучения входят в состав автоматизированных обучающих систем (АОС). Эти системы представляют собой комплексы научно-методической, учебной и организационной поддержки процесса обучения, проводимого на базе компьютерных или, как их также называют, информационных технологий. С позиций современной дидактики введение информационной среды и программного обеспечения внесло огромное количество новых возможностей во все области процесса обучения. Компьютерные технологии предстааляют собой принципиально новые средства обучения. За счет своего быстродействия и больших резервов памяти они позволяют реализовы-вать различные варианты сред для программированного и проблемного обучения, строить различные варианты диалоговых режимов обучения, когда так или иначе ответ учащегося реально влияет на ход дальнейшего обучения.

Вследствие этого современный педагог с неизбежностью должен осваивать новые образовательные подходы, опирающиеся на средства и методы индивидуального компьютерного обучения. В общем случае педагог получает доступ к компьютерным средствам, информационной среде и программным продуктам, предназначенным для обеспечения преподавательской деятельности. Все эти средства образуют комплексы автоматизированных обучающих систем.

В рамках автоматизированных обучающих систем на сегодняшний день решается ряд задач обучения. В первую группу можно отнести задачи проверки уровня знаний, умений и навыков учащихся до и после обучения, их индивидуальных способностей, склонностей и мотиваций. Для таких проверок обычно используют соответствующие системы (батареи) психологических тестов и экзаменационных вопросов. К этой же группе относятся задачи проверки показателей работоспособности учащихся, что осуществляется путем регистрации таких психофизиологических показателей, как скорость реакции, уровень внимания и т.д.

Вторая группа задач связана с регистрацией и статистическим анализом показателей усвоения учебного материала: заведение индивидуальных разделов для каждого учащегося, определение времени решения задач, определение общего числа ошибок, классификация типов индивидуальных ошибок и т. д. К этой же группе логично отнести решение задач управления учебной деятельностью. Например, задач по изменению темпа предъявления учебного материала или порядка предъявления учащемуся новых блоков учебной информации в зависимости от времени решения, типа и числа ошибок. Таким образом, эта группа задач направлена на поддержку и реализацию основных элементов программированного обучения.

Третья группа задач АОС связана с решением задач подготовки и предъявления учебного материала, адаптации материала по уровням сложности, подготовки динамических иллюстраций, контрольных заданий, лабораторных работ, самостоятельных работ учащихся. В качестве примера уровня таких занятий можно указать на возможности использования различных инструментов информационных технологий. Другими словами, использования программных продуктов, дающих возможность формирования различных сложных лабораторных или других практических работ. Например, таких, как сборка "виртуального" осциллографа с последующей демонстрацией его возможностей по регистрации, усилению или синхронизации различных сигналов. Аналогичные примеры из области химии могут касаться моделирования взаимодействия сложных молекул, поведения растворов или газов при изменении условий эксперимента.

Техническое обеспечение автоматизированных обучаюшихси-стем основано на локальных компьютерных сетях, включающих автоматизированные рабочие места (АРМ) учащихся, преподавателя и линии связи между ними (рис. 10.1). Рабочее место учащегося, кроме монитора (дисплея) и клавиатуры, может содержать принтер, такие элементы мультимедиа, какдинамики, синтезаторы звуков, текстовые и графические редакторы. Цель всех этих тех-нических и программных средств состоит в обеспечении учащихся средствами решения, справочным материалом и средствами регистрации ответов. Оснащение центрального рабочего места преподавателя включает в себя существенные дополнительные технические и программные элементы, позволяющие регистрировать ин

Рис. 10.1. Общая схема замкнутого контура управления в системе "педагог - учащийся". Программное обеспечение автоматизированных рабочих мест преподавателя и учащегося (АРМП и АРМУ) дает возможность реализации различных вариантов автоматизированных обучающих систем, в том числе систем программированного обучения, основанных на учете индивидуальных трудностей обучения и выдаче персональных заданий

дивидуальные ответы учащихся, вести статистику типов ошибок, выдавать индивидуальные задания и оказывать корректирующую помощь. Расширенные варианты автоматизированных обучающих систем могут иметь выход в пространство Интернета, доступ к базам данных по различным предметным областям, электронную почту.

с учетом истории развития компьютерного обучения различают два вида компьютерных обучающих систем: традиционные и интеллектуальные. Основные особенности интеллектуальных обучающих систем (ИОС): управление учебной деятельностью с учетом всех ее особенностей на всех этапах решения учебной задачи, начиная от постановки и поиска принципа решения и заканчивая оценкой оптимальности решения; обеспечение диалогового взаимодействия, как правило, на языке, близком к естественному. В ИОС индивидуализированное обучение осуществляется на основе динамической модели учащегося. Благодаря тому, что компьютер может объяснить свои действия, а учащийся получает возможность увидеть результаты этих действий, появляются новые возможности в осуществлении учащимися рефлексии своей деятельности. Допускается постановка учащимися учебных задач и управление процессом их решения. ИОС позволяют обеспечить распределение управляющих функций между компьютером и учащимся, передавая последнему, по мере формирования учебной деятельности, новые обучающие функции и обеспечивая тем самым оптимальный переход от учения к самообучению. В ИОС, в отличие от традиционных систем компьютерного обучения, решения заранее не программируются, а в соответствии с заложенной в нее системой правил организуют управление учебной деятельностью как эвристический процесс. Наряду с ИОС, в состав которых входят экспертные системы, широкое распространение получили так называемые пассивные ИОС (компьютерные учебные среды, микромиры), построенные по принципу «учение без обучения» (ЛОГО). Система компьютерного обучения включает техническое (компьютер), программное и учебное обеспечение. Процесс обучения может поддерживаться многими программами. Комплекс программ, выполняющих одну или несколько взаимосвязанных функций в процессе обучения, называют модулем. ИОС содержат, как правило, следующие модули: эксперт, педагогический модуль (обеспечивающий управление учением), модель учащегося, пользовательский интерфейс.