Содержащий гены. Название «хромосома» происходит от греческих слов (chrōma - окраска, цвет и sōma - тело), и обусловлено тем, что при делении клетки они интенсивно окрашиваются в присутствии основных красителей (например, анилин).

Многие ученые, с начала XX века, задумывались над вопросом: «Сколько хромосом у человека?». Так до 1955 года все «умы человечества» были убеждены, что количество хромосом у человека составляет 48, т.е. 24 пары. Причиной послужило то, что Теофилус Пейнтер (техасский ученый) неправильно посчитал их в препаративных срезах семенников людей, по решению суда (1921 год). В дальнейшем другие ученые, используя разные методы подсчета, также приходили к такому мнению. Даже разработав метод разделения хромосом, исследователи не стали оспаривать результат Пейнтера. Ошибку обнаружили ученые Альберт Леван и Джо-Хин Тьо в 1955 году, которые точно просчитали, сколько пар хромосом у человека, а именно - 23 (при их подсчете использовалась более современная техника).

Соматические и половые клетки содержат различный хромосомный набор у биологических видов, чего нельзя сказать об морфологических признаках хромосом, которые постоянны. имеют удвоенный (диплоидный набор), который разделяют на пары идентичных (гомологичных) хромосом, которые сходны по морфологии (строению) и величине. Одна часть всегда отцовского, другая - материнского происхождения. Половые же клетки человека (гаметы) представлены гаплоидным (единичным) набором хромосом. При оплодотворении яйцеклетки происходит их объединение в одном ядре зиготы гаплоидных наборов женских и мужских гамет. При этом восстанавливается двойной набор. Можно с точностью сказать, сколько хромосом у человека - их 46, при этом 22 пары из них аутосомы и одна пара - половые хромосомы (гоносомы). Половые имеют различия - как морфологические, так и структурные (состав генов). У женского организма пара гоносом содержит две Х-хромосомы (ХХ-пара), а у мужского - по одной Х- и Y-хромосоме (XY-пара).

Морфологически хромосомы изменяются при делении клетки, когда они удваиваются (за исключением половых клеток, у которых удвоения не происходит). Это повторяется много раз, однако изменение хромосомного набора не наблюдается. Наиболее заметны хромосомы на одной из стадий деления клетки (метафаза). В эту фазу хромосомы представлены двумя продольно-расщепленными образованиями (сестринские хроматиды), которые сужаются и объединяются в области, так называемой первичной перетяжки, или ценромеры (обязательный элемент хромосомы). Теломерами называют концы хромосомы. Структурно хромосомы человека представлены ДНК (дезоксирибонуклеиновой кислотой), которая кодирует гены, входящие в их состав. Гены, в свою очередь, несут информацию о каком-либо определенном признаке.

От того, сколько хромосом у человека будет зависеть его индивидуальное развитие. Существуют такие понятия как: анэуплоидия (изменение количества отдельных хромосом) и полиплоидия (число гаплоидных наборов больше диплоидного). Последняя бывает нескольких видов: потеря гомологичной хромосомы (моносомия), либо появление (трисомия - одна лишняя, тетрасомия - две лишние, и т.д.). Все это является следствием геномных и хромосомных мутаций, которые могут приводить к таким патологическим состояниям, как: синдромы Кляйнфельтера, Шерешевкого-Тернера и другим заболеваниям.

Таким образом, только ХХ век дал ответы на все вопросы, и теперь о том, сколько хромосом у человека, знает каждый образованный житель планеты Земля. Именно от того, каков будет состав 23 пары хромосом (ХХ или XY), зависит пол будущего ребенка, и определяется это при оплодотворении и слиянии женской и мужской половой клетки.

Порой преподносят нам удивительные сюрпризы. Например, знаете ли вы, что такое хромосомы, и как они влияют на ?

Предлагаем разобраться в этом вопросе, чтобы раз и навсегда расставить все точки над «i».

Рассматривая семейные фотографии, вы наверняка могли заметить, что члены одного родства похожи друг на друга: дети – на родителей, родители – на бабушек и дедушек. Это сходство передается от поколения к поколению с помощью удивительных механизмов .

У всех живых организмов, от одноклеточных до африканских слонов, в ядре клетки находятся хромосомы – тонкие длинные нити, которые можно рассмотреть только в электронный микроскоп.

Хромосо́мы (др.-греч. χρῶμα - цвет и σῶμα - тело) - это нуклеопротеидные структуры в ядре клетки, в которых сосредоточена бо́льшая часть наследственной информации (генов). Они предназначены для хранения этой информации, ее реализации и передачи.

Сколько хромосом у человека

Еще в конце XIX века ученые выяснили, что число хромосом у разных видов не одинаково.

Например, у гороха 14 хромосом, у – 42, а у человека – 46 (то есть 23 пары) . Отсюда возникает соблазн сделать вывод, что чем их больше – тем сложнее существо, обладающее ими. Однако на самом деле это совершенно не так.

Из 23 пар человеческих хромосом 22 пары — аутосомы и одна пара — гоносомы (половые хромосомы). Половые имеют морфологические и структурные (состав генов) различия.

У женского организма пара гоносом содержит две Х-хромосомы (ХХ-пара), а у мужского – по одной Х- и Y-хромосоме (XY-пара).

Именно от того, каков будет состав хромосом двадцать третьей пары (ХХ или XY), зависит пол будущего ребенка. Определяется это при оплодотворении и слиянии женской и мужской половой клетки.

Данный факт может показаться странным, но по числу хромосом человек уступает многим животным. Например, у какой-то несчастной козы 60 хромосом, а у улитки – 80.

Хромосомы состоят из белка и молекулы ДНК (дезоксирибонуклеиновой кислоты), похожей на двойную спираль. В каждой клетке находится около 2 метров ДНК, а всего в клетках нашего организма около 100 млрд. км ДНК.

Интересен факт, что при наличии лишней хромосомы или при отсутствии хотя бы одной из 46, — у человека наблюдается мутация и серьезные отклонения в развитии (болезнь Дауна и т.п.).

Клеточное ядро

Ядро (лат. nucleus , греч. karyon ) — важнейшая составляющая часть эукариотической клетки.

Ядро выполняет две основные функции:

  • хранения и воспроизводства генетической информации;
  • регуляции процессов обмена веществ, происходящих в клетке, обеспечивая её нормальную жизнедеятельность.

В ядре находится более 90% ДНК всей клетки.

Большинство клеток имеют одно ядро. Некоторые клетки могут содержать по 2 ядра (у инфузорий это макронуклеус и микронуклеус).

В эукариотических организмах существуют клетки, не имеющие ядер, но срок их жизни недолог (зрелые эритроциты, живут в среднем 125 суток). Также известны многоядерные клетки (поперечнополосатые мышечные волокна, грибные клетки).

Многоядерные клетки поперечнополосатой мышечной ткани

Ядро чаще всего расположено в центре клетки, и только у растительных клеток с центральной вакуолью — в пристеночной протоплазме.

Оно может быть различной формы: округлым, яйцевидным, подковообразным, сегментированным (редко), вытянутым в длину, веретеновидным и т. д.

Округлое ядро Подковообразное (бобовидное) ядро

Ядро состоит из:

  • нуклеоплазмы;
  • хроматина (хромосом);
  • ядрышек;
  • ядерной оболочки, переходящей в часть эндоплазматической сети.

Ядерная оболочка

Ядро окружено оболочкой, состоящей из двух мембран, имеющих типичное для всех мембран строение.

Наружная ядерная мембрана покрыта рибосомами и переходит непосредственно в каналы эндоплазматической сети (эндоплазматического ретикулума). Внутренняя мембрана гладкая, она контактирует с хромосомным материалом ядра. Отделены мебраны друг от друга перинуклеарным пространством .

Толщина такой двухмембранной ядерной оболочки составляет 30 нм. Она пронизана множеством пор, которые обеспечивают транспорт иРНК, тРНК, АТФ, ферментов, ионов и других веществ.

Несмотря на активный обмен между ядром и цитоплазмой, ядерная оболочка создает возможность существования в ядре особой внутренней среды.

Ядерные поры

Ядерная оболочка пронизана многочисленными отверстиями — порами, образующимися за счет слияния двух ядерных мембран. Эти отверстия заполнены глобулярными и фибриллярными структурами. Совокупность ядерных пор и этих структур называется комплексом пор ядра .

Через поры происходит обмен веществ между ядром и цитоплазмой. Из ядра в цитоплазму выходят РНК и субъединицы рибосом, а в ядро поступают нуклеотиды, необходимые для сборки РНК, ферменты и другие вещества, обеспечивающие деятельность ядерных структур.

Число ядерных пор зависит от метаболической активности клеток: чем выше синтетические процессы в клетках, тем больше пор на единицу поверхности клеточного ядра.

Ядерный сок

Кариоплазма , или нуклеоплазма — жидкость, содержащаяся в клеточном ядре, в которой происходят все процессы.

Ядерный сок состоит из:

  • жидкой части;
  • ядерного матрикса (подобие каркаса, пронизывающего ядерный сок, — тяжи, состоящие из кислых белков);
  • различных включений.

Жидкая часть сходна по составу с соответствующим компонентом цитоплазмы: здесь тоже содержатся ферменты, рибосомальные и структурные белки хромосом, свободные нуклеотиды, аминокислоты и прочие промежуточные продукты метаболизма клетки.

Ядрышко

Плотное округлое тельце, состоящее из рРНК и рибосом на разных этапах формирования, погруженное в ядерный сок. В ядрах различных клеток и в ядре одной и той же клетки в зависимости от ее функцирнального состояния число ядрышек может колебаться от 1 до 5 — 7 и более.

Ядрышки присутствуют только в неделящихся ядрах. Во время митоза они исчезают, а после вновь появляются вокруг участка хромосомы (гена), в котором закодирована структура рРНК. Это ген носит название ядрышкового организатора (ЯО). На нем идет синтез рРНК.

Помимо синтеза рРНК, в ядрышке синтезируются субъединицы рибосом.

Хроматином (греч. chroma — цвет, окраска) называют ДНК-белковые комплексы.

ДНК, расположенная в клеточном ядре, содержит информацию о всех признаках организма. Суммарная длина ДНК 46 хромосом человека составляет 2 метра. Однако вся она упаковывается в ядре клетки благодаря специальным белкам — гистонам .

Гистоны — белки в ядрах клеток эукариот, входящие в состав комплексов с ДНК. Гистоны участвуют в поддержании и изменении структуры хромосом на разных стадиях клеточного цикла, а также в регуляции активности генов.

Существует пять видов гистонов: H1 (очень богатый лизином), H2a и H2b (богатые лизином), H3 (богатый аргинином) и H4 (богатый глицином и аргинином).

Элементарной единицей упаковки хроматина является нуклеосома. Она состоит из двойной спирали ДНК, которая 1,75 раза обвивается вокруг комплекса из восьми гистонов.

В хроматине ДНК представлена непрерывной двуспиральной нитью от одной нуклеосомы к другой. Нуклеосомы разделены равными участками не контактирующей с гистоновыми комплексами ДНК. Эта структура на микрофотографиях имеет вид бусин на нитке .

Между делениями молекулы ДНК в клетке находятся в деспирализованном состоянии, разглядеть их в световой микроскоп практически невозможно. В готовящейся к делению клетке молекулы ДНК удваиваются, спирализуются, укорачиваются и приобретают компактную форму, что делает их заметными. В таком состоянии комплекс ДНК и белков называют хромосомами . Хромосома представляет собой непрерывные нити хроматина, уложенные определенным образом.

Хромосомы

Нитевидные тельца, состоящие из молекул ДНК, содержащиеся в ядре эукариотической клетки - хромосомы (греч. chroma — цвет, soma — тело). Хромосомы могут состоять из одной или нескольких одинаковых молекул ДНК (2, 4, 8 и т. д.), соединённых в области первичной перетяжки. Концевые участки хромосом (теломеры) предохраняют их концы от слипания.


Размеры хромосом у разных организмов отличаются друг от друга. Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов. Наиболее длинные — у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5 — 10 мкм.

Центромера (лат. сentrum , греч. kéntron — центр и méros — часть, доля) — участок в области первичной перетяжки, к которому во время деления клетки прикрепляются нити веретена деления. Центромера делит хромосому на два плеча одинаковой или разной длины.

Изменение положения центромеры в определенной хромосоме служит критерием выявления хромосомных перестроек.

В зависимости от расположения центромеры различают четыре типа строения хромосом:

  • метацентрические (обладающие плечами равной длины);
  • субметацентрические (с плечами неравной длины);
  • акроцентрические (с очень коротким вторым плечом);
  • телоцентрические (одно плечо отсутствует).

Во всех соматических клетках любого растительного или животного организма число хромосом одинаково.

Половые клетки всегда содержат вдвое меньше хромосом, чем соматические клетки данного вида организмов.

Количество хромосом у разных видов живых организмов

Название вида Число хромосом в соматических клетках
Человек 46
Ясень 46
Горилла 48
Буйвол 48
Шимпанзе 48
Картофель 48
Перец черный 48
Собака 78
Курица 78
Кошка 38
Рапс 38
Лисица 38
Морская свинка 64
Лошадь 64
Голубь сизый 16
Лук 16
Красная смородина 16
Пчела медоносная 32
Вишня 32
Мышь домовая 40
Корова 60
Картофель 44
Рак речной 116
Плодовая мушка дрозофила 8
Сазан 104

Как видно из этой таблицы, у далеких видов количество хромосом может быть одинаковым, а у родственных видов может сильно различаться.

При изучении хромосомных наборов разных особей были обнаружены виды-двойники , почти не отличающиеся друг от друга морфологически, но, имеющие разное число хромосом или отличия в их строении. Такие виды не скрещиваются между собой. Таковы, например, обитающие на одной территории клесты еловик и сосновик , чьи хромосомы отличаются по своей структуре.

Виды-двойники известны и в царстве растений. Внешне практически не различимы кларкия двулопастная и кларкия языковидная из семейства кипрейных, растущие в Калифорнии, однако в хромосомном наборе второго вида присутствует добавочная хромосома.

Следующая страница "Прокариотическая клетка" >

Хромосомы - это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц - хроматид [ выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон.

Химической основой строения хромосом являются нуклеопротеиды - комплексы (см.) с основными белками - гистонами и протаминами.

Рис. 1. Строение нормальной хромосомы.
А - внешний вид; Б - внутреннее строение: 1-первичная перетяжка; 2 - вторичная перетяжка; 3 -спутник; 4 - центромера.

Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.



Рис. 2. Нормальный хромосомный набор женщины (в правом нижнем углу две X-хромосомы).


Рис. 3. Нормальный хромосомный набор мужчины (в правом нижнем углу - последовательно Х- и Y-хромосомы).

В зрелых , яйцеклетках и содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного набора (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский определяется наличием двух Х-хромосом, а мужской - одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде (см.). Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma - окраска и soma - тело) - нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности - гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток - мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки хромосом в виде тонких нитей диаметром 100-500 Å можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры).

Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз-интерфаза-митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности . Впервые хромосомы описали И. Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г. В 1901 г. Уилсон (Е. В. Wilson), а в 1902 г. Саттон (W. S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности - генов - в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915-1920 гг. Морган (Т. Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах.

Химический состав и ауторепродукция хромосом . В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов [ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков] и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 Å (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J. D. Watson, F. Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. (см. Генетика). Вскрыты закономерности авторепродукции хромосом [Тейлор (J. Н. Taylor) и др., 1957], оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор - совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека - 46, гориллы - 48, кошки - 60, крысы - 42, дрозофилы - 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк.

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина (см.); к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе (рис. 4).

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки.

Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом: 1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку; 2) субметацентрические хромосомы с длинными плечами неравной длины; 3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины (рис. 3, 4, 5 и 7).


Рис. 4. Схема строения хромосом в метафазе митоза после продольного расщепления центромера: А и А1 - сестринские хроматиды; 1 - длинное плечо; 2 - короткое плечо; 3 - вторичная перетяжка; 4- центромер; 5 - волокна веретена.

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники - маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью (рис. 5). Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) - утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.


Рис. 5. Схема морфологии хромосомы в анафазе митоза (хроматида. отходящая к полюсу). А - внешний вид хромосомы; Б - внутреннее строение той же хромосомы с двумя составляющими ее хромонемами (полухроматидами): 1 - первичная перетяжка с хромомерами, составляющими центромер; 2 - вторичная перетяжка; 3 - спутник; 4 - нить спутника.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы . Гены, детерминирующие пол, локализованы в специальной паре хромосом - половых хромосомах (млекопитающие, человек); в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y. В результате редукционного деления (мейоза) при созревании ооцитов (см. Овогенез) у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х- или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра . Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов хромосом в многонитчатых (политенных) хромосомах слюнных желез и других секреторных органов двукрылых насекомых (рис. 6). Примером инактивации целой хромосомы, т. е. выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина.

Рис. 6. Политенные хромосомы двукрылого насекомого Acriscotopus lucidus: А и Б - участок, ограниченный пунктирными линиями, в состоянии интенсивного функционирования (пуфф); В - тот же участок в нефункционирующем состоянии. Цифрами обозначены отдельные локусы хромосом (хромомеры).
Рис. 7. Хромосомный набор в культуре лейкоцитов периферической крови мужчины (2n=46).

Вскрытие механизмов функционирования политенных хромосом типа ламповых щеток и других типов спирализации и деспирализации хромосом имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека . В 1922 г. Пейнтер (Т. S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н. J. Tjio, A. Levan) использовали комплекс новых методов исследования хромосом человека: культуру клеток; исследование хромосом без гистологических срезов на тотальных препаратах клеток; колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз; фитогемагглютинин, стимулирующий вступление клеток в митоз; обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека. В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору хромосом единичной клетки (рис. 7 и 8). Термин «идиотрамма» сохраняется для представления о наборе хромосом в виде диаграммы, построенной на основании измерений и описания морфологии хромосом нескольких клеток.

Хромосомы человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Половые хромосомы не имеют номеров и обозначаются как Х и Y (рис. 8).

Обнаружена связь ряда заболеваний и врожденных дефектов в развитии человека с изменениями в числе и структуре его хромосом. (см. Наследственность).

См. также Цитогенетические исследования.

Все эти достижения создали прочную базу для развития цитогенетики человека.

Рис. 1. Хромосомы: А - на стадии анафазы митоза в микроспороцитах трилистника; Б - на стадии метафазы первого деления мейоза в материнских клетках пыльцы у традесканции. В обоих случаях видно спиральное строение хромосом.
Рис. 2. Элементарные хромосомные нити с диаметром 100 Å (ДНК + гистон) из интерфазных ядер вилочковой железы теленка (электронная микроскопия): А - изолированные из ядер нити; Б - тонкий срез через пленку того же препарата.
Рис. 3. Хромосомный набор Vicia faba (конские бобы) в стадии метафазы.
Рис. 8. Хромосомы того же, что на рис. 7, набора, систематизированные согласно денверовской номенклатуре в пары гомологов (кариотип).


Какие мутации, кроме синдрома Дауна, нам грозят? Возможно ли скрестить человека с обезьяной? И что произойдет с нашим геномом в будущем? Редактор портала АНТРОПОГЕНЕЗ.РУ поговорил о хромосомах с генетиком, зав. лаб. сравнительной геномики СО РАН Владимиром Трифоновым.

− Можете ли объяснить простым языком, что такое хромосома?

− Хромосома – это фрагмент генома любого организма (ДНК) в комплексе с белками. Если у бактерий обычно весь геном – это одна хромосома, то у сложных организмов с выраженным ядром (эукариотов) обычно геном фрагментирован, и комплексы длинных фрагментов ДНК и белка отчётливо видны в световой микроскоп при делении клетки. Именно поэтому хромосомы как окрашивающиеся структуры («хрома» - цвет по-гречески) были описаны еще в конце XIX века.

− Есть ли какая-то связь между количеством хромосом и сложностью организма?

− Никакой связи нет. У сибирского осетра 240 хромосом, у стерляди – 120, но отличить эти два вида между собой иногда довольно сложно по внешним признакам. У самок индийского мунтжака 6 хромосом, у самцов – 7, а у их родственника – сибирской косули их больше 70 (вернее, 70 хромосом основного набора и еще до десятка добавочных хромосом). У млекопитающих эволюция разрывов и слияний хромосом шла довольно интенсивно и сейчас мы наблюдаем результаты этого процесса, когда зачастую у каждого вида есть характерные особенности кариотипа (набора хромосом). Но, несомненно, общее увеличение размера генома было необходимым этапом в эволюции эукариот. При этом как этот геном распределяется по отдельным фрагментам вроде бы не очень важно.

− Какие существуют распространённые заблуждения по поводу хромосом? Народ часто путается: гены, хромосомы, ДНК…

− Поскольку действительно часто возникают хромосомные перестройки, то у людей есть опасения относительно хромосомных аномалий. Известно, что лишняя копия самой мелкой хромосомы человека (хромосомы 21) приводит к довольно серьезному синдрому (синдром Дауна), имеющему характерные внешние и поведенческие особенности. Лишние половые хромосомы или их недостаток также довольно часто встречаются и могут иметь серьезные последствия. Однако генетиками описано и довольно много относительно нейтральных мутаций, связанных с появлением микрохромосом, или дополнительных Х и Y хромосом. Думаю, стигматизация этого явления связана с тем, что люди слишком узко воспринимают понятие нормы.

− Какие хромосомные мутации встречаются у современного человека и к чему они приводят?

− Самые частые хромосомные аномалии − это:

− синдром Кляйнфельтера (мужчины XXY) (1 на 500) – характерные внешние признаки, определенные проблемы со здоровьем (анемия, остеопороз, мышечная слабость и нарушение половой функции), стерильность. Могут быть поведенческие особенности. Однако многие симптомы (кроме стерильности) можно корректировать введением тестостерона. С использованием современных репродуктивных технологий можно получать здоровых детей от носителей этого синдрома;

− синдром Дауна (1 на 1000) – характерные внешние признаки, замедленное когнитивное развитие, короткая продолжительность жизни, могут быть фертильны;

− трисомия по Х (женщины ХХХ) (1 на 1000) – чаще всего нет никаких проявлений, фертильность;

− синдром XYY (мужчины) (1 на 1000) – почти нет проявлений, но могут быть особенности поведения и возможны репродуктивные проблемы;

− синдром Тернера (женщины ХО) (1 на 1500) – низкорослость и другие особенности развития, нормальный интеллект, стерильность;

− сбаллансированные транслокации (1 на 1000) – зависит от типа, в некоторых случаях могут наблюдаться пороки развития и умственная отсталость, могут сказываться на фертильности;

− мелкие добавочные хромосомы (1 на 2000) – проявление зависит от генетического материала на хромосомах и варьирует от нейтрального до серьезных клинических симптомов;

В 1% популяции человека встречается перицентрическая инверсия хромосомы 9, но эта перестройка рассматривается как вариант нормы.

Является ли разница в числе хромосом препятствием к скрещиванию? А есть ли интересные примеры скрещивания животных с разным числом хромосом?

− Если скрещивание внутривидовое или между близкими видами, то разница в числе хромосом может не мешать скрещиваться, однако потомки могут оказаться стерильными. Известно очень много гибридов между видами с разным числом хромосом, например, у лошадиных: есть все варианты гибридов между лошадьми, зебрами и ослами, причем число хромосом у всех лошадиных разное и, соответственно, гибриды часто стерильны. Однако это не исключает, что случайно могут образовываться сбаллансированные гаметы.

- Что необычного в области хромосом было открыто в последнее время?

− В последнее время было много открытий, касающихся структуры, функционирования и эволюции хромосом. Мне особенно нравятся работы, показавшие, что половые хромосомы образовывались в разных группах животных совершенно независимо.

− А все-таки, можно ли скрестить человека с обезьяной?

− Теоретически получить такого гибрида можно. В последнее время получены гибриды гораздо более эволюционно далеких млекопитающих (белого и черного носорога, альпаки и верблюда и так далее). Рыжий волк в Америке, долго считался отдельным видом, но недавно было доказано, что он является гибридом между волком и койотом. Известно огромное количество гибридов кошачьих.


− И совсем абсурдный вопрос: можно ли скрестить хомяка с уткой?

− Вот тут скорее всего ничего не получится, потому что генетических отличий за сотни миллионов лет эволюции накопилось слишком много, чтобы носитель такого смешанного генома мог функционировать.


- Возможно, что в будущем у человека будет меньше или больше хромосом?

− Да, это вполне возможно. Не исключено, что сольется пара акроцентрических хромосом и такая мутация распространится на всю популяцию.

− Какую научно-популярную литературу вы посоветуете по теме генетики человека? А научно-популярные фильмы?

− Книги биолога Александра Маркова, трёхтомник «Генетика человека» Фогеля и Мотульского (правда, это не науч-поп, но там хорошие справочные данные). Из фильмов про генетику человека ничего не приходит в голову… Но вот «Внутренняя рыба» Шубина – отличный фильм и одноимённая книга про эволюцию позвоночных.