Измерение в науке означает выявление количественных характеристик изучаемых явлений. Цель измерения всегда заключается в получении информации о количественных признаках объектов, организмов или событий. Измеряется не сам объект, а только свойства или отличительные признаки объекта. В широком смысле измерение – это особая процедура, посредством которой числа (или порядковые величины) приписываются вещам по определенным правилам. Сами правила состоят в установлении соответствия между некоторыми свойствами чисел и некоторыми свойствами вещей. Возможность данного соответствия и обосновывает важность измерения в педагогике.

В процессе измерения исходят из предположения, что все существующее каким-то образом проявляется или на что-то действует. Общая задача измерения состоит в том, чтобы определить так называемую модальность одного показателя по сравнению с другим, измеряя его «вес».

Многообразие психических, физиологических и социальных явлений принято называть переменными, поскольку они отличаются индивидуальными величинами у отдельных индивидов или в разное время у одного и того же индивида. С позиции теории измерения следует различать два аспекта: а) количественная сторона - частота некоторого проявления, (чем оно чаще проявляется, тем выше значение свойства); б) интенсивность (величина или сила проявления).

Измерения можно проводить на четырех уровнях. Четырем уровням будут соответствовать четыре шкалы.

Шкала [< лат. scala – лестница] – инструмент для измерения непрерывных свойств объекта; представляет собой числовую систему, в которой отношения между различными свойствами объектов выражены свойствами числового ряда. Шкала есть способ упорядочивания объектов произвольной природы. В педагогике, психологии, социологии и других социальных науках различные шкалы используются для изучения различных характеристик педагогических и социально-психологических явлений.

Первоначально были выделены четыре типа числовых систем, которые определяют соответственно четыре уровня (или шкалы) измерения. Точнее три уровня, но третий уровень подразделяется еще на два подуровня. Их разделение осуществимо на основе тех математических преобразований, которые допускаются каждой шкалой.

1) Шкала наименований (номинальная).

2) Шкала порядка (ранговая, ординальная).

3) Метрические шкалы: а) шкала интервалов, б) шкала пропорций (пропорциональная, отношений).

Метрическая шкала бывает относительная (шкала интервалов) и абсолютная (шкала пропорций). В метрических шкалах носитель шкалы образует отношения строгого порядка, как, например, в шкалах времени, весов, температуры и др.


При абсолютном типе метрической шкалы за точку отсчета выбирается некоторая абсолютная отметка, например, измерение длины и расстояния в сравнении с эталоном (рост Пети 92 см, расстояние от одного города до другого 100 км).

В относительных шкалах точка отсчета привязана к чему-то другому. Например, Петя ростом с третьеклассника, длина удава равняется тридцати двум попугаям, летоисчисление на Западе привязывается к рождеству Христову, нулевая точка Московского времени служит ориентиром для всей территории Российской Федерации и Гринвичское нулевое время для Москвы.

Порядковая шкала не дает возможности изменить расстояние между объектами, проецируемыми на нее. С порядковыми шкалами связаны нечеткие шкалы, например, Петя выше Саши. Сначала было то-то, а потом то-то; также далеко, как …; давно, как … . Список учащихся в классном журнале также есть вид порядковой шкалы. Такие шкалы широко используются в моделировании рассуждений: если А больше, чем В , а С выше А , следовательно, С выше, чем В .

Различие уровней измерения какого-либо качества можно проиллюстрировать следующим примером. Если подразделить учащихся на справившихся и не справившихся с контрольной работой, то тем самым получим номинальную шкалу выполнивших задание. Если можно установить степень правильности выполнения контрольной работы, то строится шкала порядка (ординальная шкала). Если можно измерить насколько и во сколько раз грамотность одних больше грамотности других, то можно получить интервальную и пропорциональную шкалу грамотности выполнения контрольной работы.

Шкалы различаются не только своими математическими свойствами, но и разными способами сбора информации. В каждой шкале применяются строго определенные методы анализа данных.

В зависимости от типа задач, решаемых с помощью шкалирования, строят либо а) шкалы оценок, либо б) шкалы для измерения социальных установок.

Шкала оценок – методический прием, позволяющий распределять совокупность изучаемых объектов по степени выраженности общего для них свойства. Возможность построения шкалы оценок основывается на предположении, что каждый эксперт способен непосредственно давать количественные оценки изучаемым объектам. Простейшим примером такой шкалы является обычная школьная система баллов. Шкала оценок имеет от пяти до одиннадцати интервалов, которые могут быть обозначены цифрами, либо сформулированы вербально (словесно). Считается, что психологические возможности человека не позволяют ему производить классификацию объектов более чем по 11-13 позициям. К основным процедурам шкалирования с помощью шкалы оценок относятся парное сравнение объектов, отнесение их к категориям и др.

Шкалы для измерения социальных установок. Например, отношение учащихся к выполнению проблемного задания может варьироваться от отрицательного до творчески активного (рис.1). Расположив все промежуточные значения на шкале, мы получаем:

Используя принцип шкал, можно строить шкалы полярных профилей, измеряющие сразу несколько показателей.

Сама шкала точно определяет промежуточные значения измеряемой переменной:

7 – признак проявляется всегда,

6 – очень часто, почти всегда,

5 – часто,

4 – иногда, ни часто, ни редко,

3 – редко,

2 – очень редко, почти никогда,

1 – никогда.

Инвариант этой шкалы с заменой односторонней шкалы на двустороннюю может выглядеть следующим образом (см. рис. 2):

Шкалирование [< англ. scaling – определение масштаба, единицы измерения] – метод моделирования реальных процессов с помощью числовых систем. В социальных науках (педагогике, психологии, социологии и др.) шкалирование является одним из важнейших средств математического анализа изучаемого явления, а также способом организации эмпирических данных, получаемых с помощью наблюдения, изучения документов, анкетного опроса, экспериментов, тестирования. Большинство социальных объектов не могут быть строго фиксированы и не поддаются прямому измерению.

Общий процесс шкалирования состоит в конструировании по определенным правилам самой шкалы и включает в себя два этапа: а) на этапе сбора информации осуществляется изучение эмпирической системы исследуемых объектов и фиксирование типа отношений между ними; б) на этапе анализа данных строится числовая система, моделирующая отношения эмпирической системы объектов.

Существует два типа задач, решаемых с помощью метода шкалирования: а) числовое отображение совокупности объектов с помощью их усредненной групповой оценки; б) числовое отображение внутренних характеристик индивидов посредством фиксации их отношения к какому-либо социально-педагогическому явлению. В первом случае отображение осуществляется с помощью шкалы оценок, во втором – шкалы установок.

Разработка шкалы для измерения требует учета ряда условий: соответствие измеряемых объектов, явлений измерительному эталону; выявление возможности измерения интервала между различными проявлениями измеряемого качества или свойства личности; определение конкретных показателей различных проявлений измеряемых явлений.

В зависимости от уровня шкалы необходимо вычислять величину для обозначения главной тенденции. На номинальной шкале можно указать только модальную величину, т.е. наиболее часто встречающуюся величину. Порядковая шкала позволяет вычислить медиану, ту величину, по обе стороны от которой располагается равное количество величин. Шкала интервалов и шкала отношений делают возможным вычисление средней арифметической величины. От уровня шкалы зависят также величины корреляции.

Заслуги физики трудно переоценить. Будучи наукой, изучающей наиболее общие и фундаментальные законы окружающего нас мира, она неузнаваемо изменила жизнь человека. Когда-то термины « » и « » были синонимами, так как обе дисциплины были направлены на познание мироздания и управляющих им законов. Но позже, с началом научно- , физика стала отдельным научным направлением. Так что же она дала человечеству? Чтобы ответить на этот вопрос, достаточно оглянуться вокруг. Благодаря открытию и изучению электричества люди пользуются искусственным освещением, их жизнь облегчают бесчисленные электрические устройства. Исследование физиками электрических разрядов привело к открытию . Именно благодаря физическим исследованиям во всем мире пользуются интернетом и сотовыми телефонами. Когда-то ученые были уверены в том, что аппараты тяжелее воздуха летать не могут, это казалось естественным и очевидным. Но Монгольфье, изобретатели воздушного шара, а за ними и братья Райт, создавшие первый , доказали необоснованность этих утверждений. Именно благодаря человечество поставило себе на службу силу пара. Появление паровых машин, а вместе с ними паровозов и пароходов, дало мощный толчок к . Благодаря укрощенной силе пара люди получили возможность использовать на заводах и фабриках механизмы, не только облегчающие труд, но и в десятки, сотни раз повышающие его производительность.Без этой науки не были бы возможны и космические полеты. Благодаря открытию Исааком Ньютоном закона всемирного тяготения появилась возможность рассчитать силу, необходимую для выведения космического корабля на орбиту Земли. Знание законов небесной механики позволяет запущенным с Земли автоматическим межпланетным станции успешно достигать других планет, преодолевая миллионы километров и точно выходя к назначенной цели.Можно без преувеличения сказать, что знания, добытые физиками за века развития науки, присутствуют в любой области человеческой деятельности. Окиньте взглядом то, что вас сейчас окружает – в производстве всех находящихся вокруг вас предметов важнейшую роль сыграли достижения физики. В наше время эта активно развивается, в ней появилось по-настоящему загадочное направление, как квантовая физика. Открытия, сделанные в этой области, могут неузнаваемо изменить жизнь человека.

Источники:

  • нужна ли физика

В эпоху промышленного и технологического прогресса философия отошла на задний план, далеко не каждый человек сможет внятно ответить на вопрос о том, что это за наука и чем она занимается. Люди заняты насущными проблемами, их мало интересуют оторванные от жизни философские категории. Значит ли это, что философия потеряла свою актуальность и больше не нужна?

Философию определяют как науку, изучающую первопричины и начала всего сущего. В этом смысле она является одной из самых важных для человека наук, так как пытается найти ответ и на вопрос о причине человеческого бытия. Зачем живет человек, для чего ему дана эта жизнь? Ответ на этот вопрос определяет и пути, которые человек выбирает.

Будучи поистине всеобъемлющей наукой, философия включает в себя самые разные дисциплины и пытается найти ответы на важные для человеческого бытия вопросы – есть ли Бог, что есть добро и зло, вопросы старости и смерти, возможности объективного познания реальности и т.д. и т.п. Можно сказать, что естественные науки дают ответ на вопрос «как?», в то время как философия пытается отыскать ответ на вопрос «почему?»

Считается, что сам термин «философия» придуман Пифагором, в переводе с греческого он означает «любовь к мудрости». Следует отметить, что в отличие от других наук, в философии никто не обязывает основываться в своих рассуждениях на опыте предшественников. Свобода, в том числе и свобода мысли, является для философа одним из ключевых понятий.

Философия возникла независимо в Древнем Китае, Древней Индии и Древней Греции, откуда и начала распространяться по всему свету. Классификация существующих ныне философских дисциплин и направлений достаточно сложна и не всегда однозначна. В общефилософские дисциплины входит метафилософия, или философия философии. Существуют философские дисциплины, исследующие способы познания: логика, теория познания, философия науки. К теоретической философии относятся онтология, метафизика, философская антропология, философия природы, естественное богословие, философия духа, философия сознания, социальная философия, философия истории, философия языка. В практическую философию, иногда называемую философией жизни (аксиологией), входят этика, эстетика, праксиология (философия деятельности), социальная философия, геофилософия, философия религии, права, образования, истории, политики, хозяйства, техники, экологии. Существуют и другие направления философии, вы можете познакомиться с полным перечнем, заглянув в специализированную философскую литературу.

Несмотря на то, что новый век вроде бы оставляет философии мало места, ее практическая значимость ничуть не уменьшается – человечество по-прежнему ищет ответы на волнующие его вопросы бытия. И от ответа на эти вопросы зависит то, каким путем пойдет человеческая цивилизация в своем развитии.

Видео по теме

Связанная статья

Дисциплина в широком понятии – следование установленным правилам, регламентам. На производстве эти регламенты и режимные ограничения определены официально утвержденным документом - «Правилами внутреннего распорядка». С ними работник знакомится при приеме на работу и, подписывая трудовой договор, он формально обязуется их выполнять.

В идеале, на предприятии, где установлена «железная» дисциплина, все сотрудники строго и точно соблюдают порядок, режим работы и правила, установленные законами, подзаконными и локальными актами, положениями, инструкциями и приказами по организации, а также неукоснительно выполняют распоряжения руководителей. Понятно, что такую дисциплину сейчас не встретишь даже . Но насколько она необходима и для ?

Дисциплина призвана обеспечить единство и преемственность в рабочих и технологических процессах, что отражается на качестве производимой продукции и предоставляемых услуг. Именно дисциплина делает производственное поведение сотрудников предсказуемым, поддающимся планированию и прогнозированию. Это позволяет обеспечить взаимодействие те только на уровне рядовых исполнителей, но и между подразделениями предприятия в целом. От нее зависит эффективность труда, а, значит, количественные и качественные его показатели.

Существуют объективные и субъективные аспекты дисциплины. Объективные находят выражения в той системе установленных норм и правил, которая действует на предприятии. Субъективные представляют собой желание каждого работника выполнять их. Задача руководства – создать в компании такие условия, когда требования дисциплины ставились бы выше интересов отдельных членов трудового коллектива. В этом случае отпадает необходимость в осуществлении контрольных и сдерживающих функций со стороны руководства – коллектив сам мобилизуется на борьбу с бесхозяйственностью, бюрократизмом, прогулами и прочими явлениями, мешающими нормальной работе.

Не следует ожидать от сотрудников выполнения норм дисциплины, когда руководство предприятия само постоянно нарушает его, необоснованно привлекая их к внеплановым и авральным работам, работе во внеурочное время и выходные дни. В этом случае сотрудники вполне справедливо будут считать, что трудовую дисциплину в обычный рабочий день можно нарушить, поскольку они трудятся во внеурочное время. Если вы – управленец, то начните выполнять требования дисциплины с себя. Только в этом случае вы сможете требовать этого от своих подчиненных и избежите саботажа.

Видео по теме

Казалось бы, чем меньше слов в языке, тем проще общаться. Зачем «придумывать» такие разные слова для обозначения одного и того же, по сути, предмета или явления, т.е. ? Но при внимательном их рассмотрении становится понятно, что синонимы несут в себе ряд совершенно необходимых функций.

Богатство речи

В сочинениях младших школьников нередко можно встретить текст примерно такого содержания: «Лес был очень красивым. Там росли красивые цветы и деревья. Это была такая красота!». Происходит подобное оттого, что словарный запас ребенка еще довольно мал, и он не научился пользоваться синонимами. В речи взрослого человека, особенно письменной, такие повторы считаются лексической ошибкой. Синонимы позволяют разнообразить речь, обогатить ее.

Оттенки смысла

Каждый из синонимов, хотя и выражает похожее значение, но придает ему свой особый оттенок смысла. Так, в синонимическом ряду «неповторимый – удивительный – впечатляющий» слово «удивительный» обозначает предмет, вызывающий в первую очередь удивление, «неповторимый» - предмет, не похожий на остальные, единственный в своем роде, а «впечатляющий» - производящий сильное впечатление, но этим впечатлением может быть нечто другое, нежели простое удивление, а также этот предмет может быть похож на подобные ему, т.е. не быть «неповторимым».

Эмоционально-экспрессивная окраска речи

Синонимический ряд содержит слова, имеющие различное экспрессивно-эмоциональное значение. Так, «глаза» - слово нейтральное, обозначающее орган зрения человека; «очи» - слово, принадлежащее к книжному стилю, обозначает также глаза, но, как правило, большие и красивые. А вот слово «буркалы» тоже обозначает большие глаза, но не отличающиеся красотой, скорее уродливые. Слово это несет в себе негативную оценку и принадлежит к разговорному стилю. Еще одно разговорное слово «зенки» обозначает также некрасивые глаза, но маленького размера.

Уточнение значения

Большинство заимствованных слов имеют -аналогию в русском языке. Их можно использовать для уточнения значения терминов и других специальных слов иностранного происхождения, которые могут быть непонятны широкому кругу читателей: «Будут приняты превентивные, т.е. профилактические меры»

Как ни парадоксально, но синонимы могут выражать и противоположные оттенки значения. Так, у Пушкина в «Евгении Онегине» встречается фраза «Татьяна смотрит и не видит», и это не воспринимается как противоречие, потому что «смотреть» - это «устремлять взгляд в определенном направлении», а «видеть» - это «воспринимать и осмысливать то, что предстает перед глазами». Точно так же не вызывают отторжения фразы «равные, но не одинаковые», «не просто мыслить, но размышлять» и т.п.

Видео по теме

Физика - это наука, изучающая основополагающие закономерности материального мира, описывающая с помощью законов свойства и движение материи, явления природы и ее структуру.

Cтраница 1


Роль измерений исключительно велика - ни одна отрасль хозяйства страны не может обойтись без них.  

Роль измерений в жизни и развитии человеческого общества огромна. Любая область науки и техники немыслима без измерений. В настоящее время на измерения в научных исследованиях, на производстве и в эксплуатации различных устройств затрачивается более десятой части общественного труда. А во многих областях, например в радиоэлектронной или космической, их доля достигает половины всех затрат. Уровень измерительной техники является одним из важнейших показателей научно-технического прогресса.  

В роли измерений выступают реквизиты-признаки, используемые для формирования итоговых показателей; в роли ресурсов - реквизиты-основания итоговых показателей.  

О роли измерений тех или иных физических величин ориентировочно можно судить по составу парка измерительных приборов. Какими данными характеризуется парк средств измерений в нашей стране.  

Велика роль измерений в проблеме повышения качества выпускаемой продукции. Действительно, результаты измерений, выполненных в процессе макетирования, испытаний, отработки изделий, являются главным источником информации, на основе которой в их конструкцию, технологию изготовления вносятся соответствующие коррективы. Получение недостоверной информации приводит к снижению качества продукции, авариям, неверным решениям.  

Значительна - роль измерений плотности в организации правильной системы количественного учета жидких веществ при их приемке, хранении и отпуске, когда масса жидкостей (например, горюче-смазочных) не может быть измерена непосредственным взвешиванием на весах. Количество жидкости сначала определяют в объемных единицах, а затем, умножая на плотность, найденную для тех же условий, что и объем, переводят полученный результат в единицы массы.  

Чтобы правильно понять, какова роль измерения, нужно разобраться в том, как оно осуществляется. Для измерения необходимо взаимодействие между системой, над которой проводится измерение, и измерительным прибором. При этом показания измерительного прибора должны выражаться в макроскопическом эффекте, непосредственно воспринимаемом нашими органами чувств, таком, как перемещение стрелки по шкале.  

Ранее было отмечено, что роль измерений постоянно возрастает.  

Развитие науки и техники неразрывно связано с возрастанием роли измерений. Многообразие видов измерений и средств измерений неуклонно возрастает, причем это качественное и количественное развитие измерений должно идти в рамках обеспечения единства измерений, под которым понимается выражение результата измерения в узаконенных единицах с указанием значений характеристик погрешностей.  

Задачи, иллюстрирующие основные положения современной метрологии, показывающие роль измерений в науке, производстве, торговле, повседневной жизни, помогут Вам оценить важность Вашего труда, если Вы - метролог, дадут возможность лишний раз убедиться в необходимости грамотного подхода к проведению измерений, если Вы - экспериментатор, заострят Ваше внимание на проблемах совершенствования средств измерений, если Вы - приборостроитель.  

По мнению авторовгулучшение удельных характеристик не снижает, а повышает роль измерения величины Суд для оценки внутреннего теплового сопротивления.  

В современном обществе по мере познания им природы все более возрастает роль измерений.  


Постоянно ведущееся совершенствование стандартов ГСИ и других документов законодательной метрологии отражает объективный процесс возрастания роли измерений в современной науке и технике, стремление к повышению эффективности технологических процессов и качества выпускаемой продукции.  

Представлен обзор работ по вопросам измерений и экспериментов; определяющих современный уровень проектирования систем программного обеспечения. Обсуждается роль измерений в создании теоретических моделей, причем особо выделяются меры по обеспечению надежности и достоверности. В качестве примеров излагаются современные методы измерения характеристик программных средств и, в частности, обсуждаются метрики сложности программного обеспечения, связанные с процессом передач управления, связность модулей и теория программных средств Холстеда. Рассматривается также использование экспериментальных методов при оценке причинно-следственных связей. Проводится обзор конкретных программ экспериментальных работ, предусматривающих исследование операторов условных и безусловных передач управления. В заключение утверждается, что прогресс в области проектирования программных средств во многом связан с совершенствованием способов измерений и экспериментальной оценки методов и практических результатов проектирования систем программного обеспечения.  

  • Перевод

Теория относительности утверждает, что мы живём в четырёх измерениях. Теория струн - что в десяти. Что такое «измерения» и как они влияют на реальность?

Когда я пишу тексты за своим столом, я могу протянуть руку вверх, чтобы включить лампу, или вниз, чтобы открыть ящик стола и достать ручку. Протянув руку вперёд, я касаюсь небольшой и странной на вид статуэтки, которую мне на счастье подарила сестра. Потянувшись назад, я могу похлопать чёрную кошку, крадущуюся у меня за спиной. Справа лежат заметки, сделанные во время исследований для статьи, слева - куча вещей, которые необходимо сделать (счета и корреспонденция). Вверх, вниз, вперёд, назад, вправо, влево - я управляю самим собой в моём личном космосе трёхмерного пространства. Невидимые оси этого мира налагает на меня прямоугольная структура моего кабинета, определяемая, как и большая часть западной архитектуры, тремя составленными вместе прямыми углами.

Наши архитектура, образование и словари сообщают нам о трёхмерности пространства. Оксфордский словарь английского языка так определяет пространство: «непрерывная область или простор, свободная, доступная или не занятое ничем. Измерения высоты, глубины и ширины, в рамках которых существуют и движутся все вещи». [словарь Ожегова говорит похожим образом: «Протяженность, место, не ограниченное видимыми пределами. Промежуток между чем-н., место, где что-н. вмещается.» / прим. перев. ]. В XVIII веке Иммануил Кант утверждал, что трёхмерное евклидово пространство является априорной необходимостью, и нам, пресыщенным изображениями, созданными компьютером, и видеоиграми, постоянно напоминают об этом представлении в виде вроде бы аксиоматичной прямоугольной системы координат. В точки зрения XXI века это кажется уже почти самоочевидным.

И всё же идея о жизни в пространстве, описываемом какой-то математической структурой - это радикальная инновация западной культуры, сделавшая необходимостью опровержение старинных верований по поводу природы реальности. Хотя зарождение современной науки часто описывают как переход к механизированному описанию природы, вероятно, более важным его аспектом - и однозначно более длительным - был переход к понятию о пространстве как о геометрической конструкции.

В прошлом веке задача описания геометрии пространства стала основным проектом теоретической физики, в котором эксперты, начиная с Альберта Эйнштейна, пытались описать все фундаментальные взаимодействия природы в виде побочных продуктов формы самого пространства. Хотя на локальном уровне нас приучили думать о пространстве как о трёхмерном, общая теория относительности описывает четырёхмерную Вселенную, а теория струн говорит о десяти измерениях - или об 11, если взять за основу её расширенный вариант, М-теорию . Существуют варианты этой теории с 26-ю измерениями, а недавно математики с энтузиазмом приняли версию , описывающую 24 измерения. Но что это за «измерения»? И что означает наличие десяти измерений в пространстве?

Чтобы прийти к современному математическому пониманию пространства, сначала необходимо подумать о нём как о некоей арене, которую может занимать материя. По меньшей мере, пространство необходимо представить себе, как нечто протяжённое. Такая идея, пусть и очевидная для нас, показалась бы еретической Аристотелю , чьи концепции представления физического мира преобладали в западном мышлении в поздней античности и в средневековье.

Строго говоря, аристотелева физика включала в себя не теорию пространства, а лишь концепцию места. Рассмотрим чашку чаю, стоящую на столе. Для Аристотеля чашка была окружённой воздухом, самим по себе представлявшим некую субстанцию. В его картине мира не было такой вещи, как пустое пространство - были только границы между веществами - чашкой и воздухом. Или столом. Для Аристотеля пространство, если вы хотите его так называть, было лишь бесконечно тонкой гранью между чашкой и тем, что её окружает. Баз протяжённости пространство не было чем-то таким, внутри чего может быть что-то другое.

С математической точки зрения, «измерение» - это всего лишь ещё одна координатная ось, ещё одна степень свободы, становящаяся символической концепцией, не обязательно связанной с материальным миром. В 1860-х пионер в области логики Огастес де Морган, чьи работы повлияли на Льюиса Кэрролла, подытожил эту становящуюся всё более абстрактной область, отметив, что математика - это чисто «наука о символах», и как таковая не обязана связываться с чем-либо, кроме самой себя. Математика, в каком-то смысле, это логика, свободно перемещающаяся на полях воображения.

В отличие от математиков, свободно играющих на полях идей, физики привязаны к природе, и, по крайней мере, в принципе, зависят от материальных вещей. Но все эти идеи приводят нас к освобождающей возможности - ведь если математика допускает количество измерений больше трёх, и мы считаем, что математика оказывается полезной для описания мира, откуда нам знать, что физическое пространство ограничено тремя измерениями? Хотя Галилей, Ньютон и Кант принимали длину, ширину и высоту как аксиомы, не может ли в нашем мире существовать больше измерений?

Опять-таки, идея Вселенной с количеством измерений больше трёх проникла в сознание общества через художественную среду, на этот раз - через литературные рассуждения, наиболее известной из которых служит работа математика Эдвина Эбботта Эбботта "Флатландия " (1884). Это очаровательная социальная сатира рассказывает историю скромного Квадрата, живущего на плоскости, к которому однажды в гости приходит трёхмерное существо лорд Сфера, выводящее его в великолепный мир трёхмерных тел. В этом рае объёмов Квадрат наблюдает за его трёхмерной версией, Кубом, и начинает мечтать о переходе в четвёртое, пятое и шестое измерение. Почему не гиперкуб? Или не гипер-гиперкуб, думает он?

К сожалению, в Флатландии Квадрата причисляют к лунатикам и запирают в сумасшедший дом. Одной из моралей истории, в отличие от более слащавых её экранизаций и адаптаций, является опасность, таящаяся в игнорировании социальных устоев. Квадрат, рассказывая о других измерениях пространства, рассказывает и о других изменениях бытия - он становится математическим чудаком.

В конце XIX и начале XX веков масса авторов (Герберт Уэллс, математик и автор НФ-романов Чарльз Хинтон , придумавший слово «тессеракт» для обозначения четырёхмерного куба), художников (Сальвадор Дали) и мистиков (Пётр Демьянович Успенский [русский оккультист, философ, теософ, таролог, журналист и писатель, математик по образованию / прим. перев. ] изучала идеи, связанные с четвёртым измерением и тем, чем может стать для человека встреча с ним.

Затем в 1905 году неизвестный тогда физик Альберт Эйнштейн опубликовал работу, описывающую реальный мир как четырёхмерный. В его «специальной теории относительности» время добавлялось к трём классическим измерениям пространства. В математическом формализме относительности все четыре измерения связаны вместе - так в наш лексикон вошёл термин «пространство-время». Такое объединение было не произвольным. Эйнштейн обнаружил, что используя этот подход, можно создать мощный математический аппарат, превосходящий физику Ньютона и позволяющий ему предсказывать поведение электрически заряженных частиц. Электромагнетизм можно полностью и точно описать только в четырёхмерной модели мира.

Относительность стала чем-то гораздо большим, чем просто ещё одной литературной игрой, особенно когда Эйнштейн расширил её от «специальной» до «общей». Многомерное пространство приобрело глубинное физическое значение.

В картине мира Ньютона материя движется через пространство во времени под влиянием естественных сил, в частности, гравитации. Пространство, время, материя и силы - различные категории реальности. С СТО Эйнштейн демонстрировал объединение пространства и времени, уменьшая количество фундаментальных физических категорий с четырёх до трёх: пространства-времени, материи и сил. ОТО делает следующий шаг, вплетая гравитацию в структуру самого пространства-времени. С четырёхмерной точки зрения, гравитация - всего лишь артефакт формы пространства.

Чтобы осознать эту примечательную ситуацию, представим её двумерный аналог. Представьте себе батут, нарисованный на поверхности декартовой плоскости. Теперь разместим на решётке шар для боулинга. Вокруг него поверхность натянется и исказится так, что некоторые точки отдалятся друг от друга сильнее. Мы исказили внутреннюю меру расстояния в пространстве, сделали её неровной. ОТО говорит, что именно такому искажению тяжёлые объекты, такие, как Солнце, подвергают пространство-время, и отклонение от декартового совершенства пространства приводит к появлению явления, которое мы ощущаем, как гравитацию.

В физике Ньютона гравитация появляется из ниоткуда, а у Эйнштейна она естественным образом возникает из внутренней геометрии четырёхмерного многообразия. Там, где многообразие наибольшим образом растягивается, или отходит от декартовой регулярности, гравитация ощущается сильнее. Это иногда называют «физикой резиновой плёнки». В ней огромные космические силы, удерживающие планеты на орбитах вокруг звёзд, а звёзды на орбитах в рамках галактик, являются ничем иным, как побочным эффектом искажённого пространства. Гравитация - это буквально геометрия в действии.

Если переход в четырёхмерное пространство помогает объяснить гравитацию, то будет ли какое-либо научное преимущество у пятимерного пространства? «Почему бы не попробовать?» - спросил в 1919 году молодой польский математик Теодор Франц Эдуард Калуца , размышляя над тем, что если Эйнштейн включил гравитацию в пространство-время, то, возможно, дополнительное измерение может схожим образом обращаться с электромагнетизмом, как с артефактом геометрии пространства-времени. Поэтому Калуца добавил дополнительное измерение к уравнениям Эйнштейна, и, к своему восторгу, обнаружил, что в пяти измерениях обе эти силы прекрасно оказываются артефактами геометрической модели.

Математика волшебным образом сходится, но в данном случае проблемой стало то, что дополнительное измерение никак не коррелировало с каким-либо определённым физическим свойством. В ОТО четвёртым измерением было время; в теории Калуцы оно не было чем-либо, что можно увидеть, почувствовать или на что можно указать: оно просто было в математике. Даже Эйнштейн разочаровался в такой эфемерной инновации. Что это? - спрашивал он; где оно?

В 1926 году шведский физик Оскар Клейн дал на этот вопрос ответ, очень похожий на отрывок из произведения о Стране чудес. Он предложил представить себе муравья, живущего на очень длинной и тонкой секции шланга. По шлангу можно бегать вперёд и назад, даже не замечая крохотного кругового изменения под ногами. Это измерение смогут увидеть только муравьиные физики при помощи мощных муравьиных микроскопов. Согласно Клейну, каждая точка нашего четырёхмерного пространства-времени обладает небольшим дополнительным кружком в пространстве подобного рода, который слишком мал для того, чтобы мы его видели. Поскольку он во много раз меньше атома, неудивительно, что мы его пока не нашли. Только физики с очень мощными ускорителями частиц могут надеяться добраться до такой крохотной шкалы.

Когда физики отошли от первоначального шока, идея Клейна их покорила, и в течение 1940-х эта теория была разработана в больших математических подробностях и перенесена в квантовый контекст. К несчастью, бесконечно малая шкала нового измерения не даёт представить, как его существование можно подтвердить экспериментально. Клейн подсчитал, что диаметр крохотного кружка составляет примерно 10 -30 см. Для сравнения, диаметр атома водорода равен 10 -8 см, поэтому мы говорим о чём-то, на 20 порядков меньшем, чем самый мелкий из атомов. Даже сегодня мы вовсе не приблизились к тому, чтобы суметь разглядеть что-то на такой миниатюрной шкале. Так эта идея вышла из моды.

Калуцу же так просто было не напугать. Он верил в своё пятое измерение и в мощь математической теории, поэтому он решил провести собственный эксперимент. Он выбрал такую тему, как плавание. Он не умел плавать, поэтому он прочёл всё, что нашёл, по теории плавания, и когда решил, что достаточно полно овладел принципами поведения на воде, поехал с семьёй к морю, бросился в волны, и внезапно поплыл. С его точки зрения эксперимент по плаванию подтверждал правдивость его теории, и, хотя он не дожил до триумфа своего любимого пятого измерения, в 1960-х специалисты по теории струн возродили идею пространства с высшими измерениями.

К 1960-м физики открыли две дополнительных силы природы, работающие на субатомном масштабе. Их назвали слабым ядерным взаимодействием и сильным ядерным взаимодействием, и они отвечают за некоторые типы радиоактивности и за удержание кварков, формирующих протоны и нейтроны, из которых состоят атомные ядра. В концце 1960-х физики начали изучать новую тему теории струн (утверждающей, что частицы похожи на крохотные резиновые полоски, вибрирующие в пространстве), и идеи Калуцы и Клейна вновь вышли на поверхность. Теоретики начали постепенно приходить к мысли, нельзя ли описать две субатомные силы в терминах геометрии пространства-времени.

Оказывается, что для того, чтобы охватить обе эти силы, необходимо добавить ещё пять измерений к нашему математическому описанию. Не существует какой-то особой причины для того, чтобы их было пять; и вновь, никакие из этих дополнительных измерений не связаны с нашими ощущениями напрямую. Они есть только в математике. И это приводит нас к 10 измерениям теории струн. И вот вам четыре крупномасштабных измерения пространства-времени (описываемые ОТО), плюс шесть дополнительных «компактных» измерений (одно для электромагнетизма и пять для ядерных сил), свернувшиеся клубочком в чертовски сложную, сморщенную геометрическую структуру.

Физики и математики прилагают огромные усилия к тому, чтобы понять все возможные формы, которые способно принять это миниатюрное пространство, и какие, если вообще какие-то из множества этих альтернатив, реализуются в реальном мире. Технически эти формы известны как многообразия Калаби-Яу , и они могут существовать в любом количестве высших измерений. Эти экзотические и сложные существа, эти необычайные формы, составляют абстрактную систематику в многомерном пространстве; их двумерное сечение (лучшее, что мы можем сделать для визуализации их внешнего вида) напоминает кристаллические структуры вирусов; они кажутся почти