Микроскопические живые организмы, самые крохотные на планете, самые многочисленные жители Земли - бактерии. Это существа, по крайней мере, удивительные, вызывающие интерес науки с тех пор, как с изобретением многократного увеличения объектов (микроскопа) они были, наконец, замечены человечеством. До этого эволюция бактерий проходила у людей, можно сказать, «под самым носом», но на них никто не обращал должного внимания. И совершенно напрасно!

Древность происхождения

Они самые древние жители нашей планеты. Давнишняя среда обитания бактерий - Земля. Бактерии появились здесь первыми из живых организмов, по мнению некоторых ученых, около трех с половиной миллиардов лет назад (для сравнения: возраст Земли составляет примерно четыре миллиарда). То есть, грубо говоря, возраст бактерий сопоставим с возрастом окружающей нас природы. Кстати, известная история человечества насчитывает всего несколько десятков тысяч лет. Вот такие мы «молодые» по сравнению с этими микроорганизмами.

Самые мелкие и многочисленные

Бактерии также являются самыми мелкими из всех известных представителей живой природы. Дело в том, что клетки почти всех живых организмов имеют приблизительно одинаковые размеры. Но только не клетки бактерий. Средняя примерно в десять раз меньше по размерам, чем среднестатистическая клетка, например, человека. Из-за такой крошечности они являются еще и самыми многочисленными обитателями. Известно, что в комочке почвы, где обитают бактерии, может находиться столько же жителей, сколько, например, людей во всех странах Европы.

Выносливость

Природа, создавая бактерии, вложила в них огромный запас прочности, значительно превышающий выносливость других представителей фауны. Со времен «древности глубокой» на Земле происходило немало катаклизмов, и бактерии научились их стойко переносить. И поныне среда обитания бактерий настолько разнообразна, что вызывает глубокий интерес микробиологов. Микроорганизмы порой могут быть обнаружены в таких местах, где уж точно никто из других существ не сможет обитать.

Где могут жить бактерии

Например, в кипящих гейзерах, где температура воды может достигать почти ста градусов выше нуля. Или - в нефтяных подземных озерах, а также в непригодных для жизни кислотных озерах, где любая рыба или другое животное тотчас бы растворились, - вот где могут жить бактерии.

Ученые предполагают, что некоторые могут существовать даже в космосе! Кстати, на этих данных основывается одна из версий заселения земного шара живыми существами, теория происхождения жизни на планете.

Споры

Для того чтобы переносить подобные неблагоприятные условия, некоторые бактерии образуют споры. Можно сказать, что это особая, спящая, покоящаяся форма. Перед тем как образовать спору, бактерия начинает усыхать, удаляя из себя жидкость. Она уменьшается в размерах, оставаясь внутри своей оболочки, покрываясь дополнительно еще одной оболочкой - защитного характера. В таком виде микроорганизм может существовать очень и очень долго, таким образом как бы «пережидая» трудные времена. Затем, в зависимости от того, в какой среде живут бактерии - благоприятной или нет - они могут возобновлять свою жизнедеятельность в полном объеме. Эта уникальная способность выживать в неблагоприятных условиях внимательно изучается учеными-микробиологами.

Вездесущие

На вопрос «где живут бактерии?» можно ответить очень просто: «Практически везде!» А именно: вокруг нас и в нас, в атмосфере, в почве, в воде. И каждый человек ежедневно вступает в контакт с мириадами этих существ, сам не замечая этого. Среди них есть бактерии патогенные и условно-патогенные. Есть и совершенно безопасные для человеческого организма.

На земле

В почве, где живут бактерии, их содержится наибольшее количество. Здесь есть и питательные вещества, необходимые для жизнедеятельности, и оптимальное количество воды, отсутствует прямое солнечное освещение. Большинство из подобных бактерий - сапрофиты. Они участвуют в процессах формирования плодородной части почвы (гумуса). Однако здесь присутствуют и болезнетворные микроорганизмы: возбудители столбняка, ботулизма, газовой гангрены и других болезней. Затем они могут попадать в воздух и воду, в дальнейшем заражая человека этими заболеваниями.

Так, возбудитель столбняка, довольно крупная палочка, попадает в организм из почвы при различных повреждениях кожи и размножается в анаэробных (без кислорода) условиях.

В воде

Еще где могут жить бактерии, так это в водной среде. Сюда они попадают, когда их смывает с почвы, а стоки попадают в водоемы. По этой причине, кстати, в артезианской воде намного меньше бактерий, чем в надпочвенной. А обыкновенная вода из озера или речки может стать средой, где обитают болезнетворные бактерии, местом распространения многих опасных заболеваний: брюшного тифа, холеры, дизентерии и некоторых других. Так, например, дизентерия вызывается бактериями из разновидностей шигелл и сопровождается тяжелой интоксикацией организма, поражениями ЖКТ.

В атмосфере

В воздухе, где могут жить бактерии, их не так много, как в почве. Атмосфера является промежуточным этапом в миграции микроорганизмов, поэтому не может служить - в силу отсутствия питательных веществ и недостаточной влажности - постоянным местом обитания для бактерий. В воздух бактерии попадают с пылью, микроскопическими капельками воды, но затем - оседают, в конце концов, на почву. Однако в густонаселенных местах - крупных мегаполисах, например, - количество содержащихся в воздухе микроорганизмов может быть велико, особенно в летнее время. А сам воздух может служить средой, где обитают всевозможные инфекции. Некоторые из них: дифтерия, коклюш. А также туберкулез, вызываемый

На человеке

На коже человека находится великое множество микроорганизмов. Но они неравномерно распределяются по всей плоскости. Есть у бактерий «излюбленные» места, а есть участки, напоминающие безлюдные пустыни. Причем, по данным ученых, большинство микроорганизмов, обитающих на коже людей, не являются вредоносными. Наоборот, они выполняют своего рода защитные функции для человека от микробов, считающихся опасными. Научно доказано, что чрезмерная стерильность и чистота - не так уж и хороши (конечно же, простых еще никто не отменял). Меньше всего бактерий находится у человека за Основное количество - на предплечьях (там их до 45 видов). Множество бактерий живет на слизистых оболочках, так называемых влажных зонах, где они себя чувствуют весьма комфортно. В сухих (ладони, ягодицы) - условия существования не совсем пригодны для микроорганизмов.

Внутри нас

По утверждению врачей-микробиологов, в проживает примерно три килограмма бактерий! А в количественном отношении - это огромная армия, с которой нельзя не считаться. Однако бактерии - умные соседи. Основная масса обитающих в теле человека (а также других млекопитающих) - полезны и осуществляют мирное соседство с «хозяевами». Одни - помогают пищеварению. Другие - выполняют охранные функции: в результате их действий болезнетворные микроорганизмы при попытке проникновения на подзащитную территорию тотчас же уничтожаются. 99% населения - бифидобактерии и бактероиды. А энтерококки, кишечная палочка (являющаяся условно патогенной), лактобактерии - примерно от 1 до 10%. Они при неблагоприятных условиях могут вызвать различные заболевания, но в организме здорового человека выполняют полезные функции. Еще там обитают различные грибы и стафилококки, также могущие быть патогенными. Но в основном в ЖКТ существует некий бактериологический баланс, словно задуманный природой, поддерживающий здоровье человека на должном уровне. А при достаточно высоком иммунитете не могут проникать внутрь и причинять вред.


Атмосфера является одной из самых важных составляющих нашей планеты. Именно она «укрывает» людей от суровых условий космического пространства, таких как солнечная радиация и космический мусор. При этом многие факты об атмосфере неизвестны большинству людей.

1. Настоящий цвет неба




Хотя в это трудно поверить, небо на самом деле фиолетовое. Когда свет попадает в атмосферу, воздух и вода частицы поглощают свет, рассеивая его. При этом более всего рассеивается фиолетовый цвет, поэтому люди и видят голубое небо.

2. Эксклюзивный элемент в атмосфере Земли



Как многие помнят из школы, атмосфера Земли состоит из приблизительно 78% азота, 21% кислорода и небольших примесей аргона, углекислого газа и других газов. Но мало кто знает, что наша атмосфера является единственной, на данный момент обнаруженной учеными (помимо кометы 67P), которая имеет свободный кислород. Поскольку кислород является очень химически активным газом, он часто вступает в реакцию с другими химическими веществами в космосе. Его чистая форма на Земле делает планету пригодной для жизни.

3. Белая полоса на небе



Наверняка, некоторые иногда задумывались, почему за реактивным самолетом на небе остается белая полоса. Эти белые следы, известные как инверсионные, образуются, когда горячие и влажные выхлопные газы из двигателя самолета смешиваются с более холодным наружным воздухом. Водяной пар из выхлопных газов замерзает и становится видимым.

4. Основные слои атмосферы



Атмосфера Земли состоит из пяти основных слоев, которые и делают возможной жизнь на планете. Первый из них, тропосфера, простирается от уровня моря до высоты примерно в 17 км до на экваторе. Большая часть погодных явлений происходит именно в нем.

5. Озоновый слой

Следующий слой атмосферы, стратосфера достигает высоты примерно 50 км на экваторе. В ней находится озоновый слой, который защищает людей от опасных ультрафиолетовых лучей. Несмотря на то, что этот слой находится выше тропосферы, он может быть на самом деле теплее из-за поглощаемой энергии солнечных лучей. В стратосфере летают большинство реактивных самолетов и метеозондов. Самолеты могут летать в ней быстрее, поскольку здесь на них меньше влияют сила тяжести и трения. Метеозонды же могут получить лучшее представление о штормах, большинство из которых происходят ниже в тропосфере.

6. Мезосфера



Мезосфера - средний слой, простирающийся до высоты 85 км над поверхностью планеты. Температура в нем колеблется около -120 ° C. Большинство метеоров, которые входят в атмосферу Земли, сгорают в мезосфере. Последними двумя слоями, переходящими в космос, являются термосфера и экзосфера.

7. Исчезновение атмосферы



Земля, скорее всего, теряла свою атмосферу несколько раз. Когда планета была покрыта океанами магмы, в нее врезались массивные межзвездные объекты. Эти воздействия, из-за которых также образовалась Луна, возможно, впервые образовали атмосферу планеты.

8. Если бы не было атмосферных газов...



Без различных газов в атмосфере Земля была бы слишком холодной для существования людей. Водяной пар, углекислый газ и другие атмосферные газы поглощают тепло от солнца и «распределяют» его по поверхности планеты, помогая создать климат, пригодный для обитания.

9. Образование озонового слоя



Пресловутый (и важно необходимый) озоновый слой был создан, когда атомы кислорода вступили в реакцию с ультрафиолетовым светом солнца, образовав озон. Именно озон поглощает большинство вредного излучения Солнца. Несмотря на свою важность, озоновый слой был образован сравнительно недавно после того, как в океанах возникло достаточно жизни, чтобы выделять в атмосферу количество кислорода, необходимое для создания минимальной концентрации озона

10. Ионосфера



Ионосфера называется так, потому что высокоэнергетические частицы из космоса и от Солнца помогают сформировать ионы, создавая «электрический слой» вокруг планеты. Когда не существовало спутников, этот слой помогал отражать радиоволны.

11. Кислотные дожди



Кислотный дождь, который разрушает целые леса и опустошает водные экосистемы, формируется в атмосфере, когда диоксид серы или частицы оксида азота перемешиваются с водяным паром и выпадают на землю в виде дождя. Эти химические соединения встречаются и в природе: диоксид серы вырабатывается при вулканических извержениях, а оксид азота - при ударах молний.

12. Мощность молний



Молнии обладают такой мощью, что всего один разряд может нагреть окружающий воздух до 30 000 ° C. Быстрый нагрев вызывает взрывное расширение близлежащего воздуха, который слышно в виде звуковой волны, называемой громом.



Aurora Borealis и Aurora Australis (северное и южное полярные сияния) вызваны реакциями ионов, происходящими в четвертом уровне атмосферы, термосфере. Когда высоко заряженные частицы солнечного ветра сталкиваются с молекулами воздуха над магнитными полюсами планеты, они светятся и создают великолепные световые шоу.

14. Закаты



Закаты часто выглядят как горящее небо, поскольку небольшие атмосферные частицы рассеивают свет, отражая его в оранжевых и желтых оттенках. Тот же принцип лежит в основе формирования радуг.



В 2013 году ученые обнаружили, что крошечные микробы способны выживать на высоте в много километров над поверхностью Земли. На высоте 8-15 км над планетой были обнаружены микробы, разрушающие органические химические вещества, которые плавают в атмосфере, «питаясь» ими.

Приверженцам теории апокалипсиса и разных прочих страшилок интересно будет узнать про .

На 111-м собрании Американского общества микробиологии (ASM) в Новом Орлеане на этой неделе Alexander Michaud из Государственного университета штата Монтана в Bozeman представил последние результаты своей команды в новой развивающейся области «биоосаждение», в которой ученые исследуют степень влияния бактерий и других микроорганизмов на погодные явления.

В своем выступлении во вторник Michaud говорил о том, как он и его группа обнаружили высокую концентрацию бактерий в центре градин. Центр градины является первой частью открытия, «зародышем»:

Michaud сказал, что молекулам воды необходимо «ядро», вокруг которого они будут скапливаться и это приведет к осадкам в виде дождя, снега и града.

«Существует все больше доказательств того, что этими ядрами могут быть бактерии или другие биологические частицы », добавил Michaud.

Он и его команда рассмотрели градины более, чем 5 см в диаметре, которые упали в кампусе университета во время града в июне 2010 года.

Они проанализировали талые воды из четырех слоев в каждой градине и обнаружили, что внутреннее ядро, содержит наибольшее количество живых бактерий, о чем свидетельствует их возможность расти.

Термин «биоосаждение» был впервые введен в начале 1980-х David Sands, профессором и фитопатологом в Университете штата Монтана. В настоящее время это развивающаяся область, где ученые исследуют, как формируются ледяные облака, и как бактерии и другие микроорганизмы способствуют этому, образуя ядра, частицы, вокруг которых могут формироваться кристаллы льда.

Как только температура в облаках становится больше, чем -40 градусов Цельсия, лед спонтанно не образуется:

«Аэрозоли в облаках играют ключевую роль в процессах, ведущих к образованию осадков ».

Christner пояснил, что в то время, как различные типы частиц могут служить ядрами для образования льда, наиболее активным и естественным из них является биологический, способный катализировать образование льда на уровне около -2 градусов по Цельсию.

Наиболее хорошо изученным является Pseudomonas syringae, которые можно увидеть в качестве пятен на томатах после заморозков.

«В штаммах P. syringae есть ген, кодирующий белок в их внешней мембране, который связывает молекулы воды в упорядоченное расположение, обеспечивая эффективный шаблон, который усиливает образование кристаллов льда », пояснил Christner.

С помощью компьютерной модели для имитации условий в аэрозольных облаках, исследователи выяснили, что высокая концентрация биологических ядер может влиять на многие события в атмосфере Земли, такие как размер и концентрация ледяных кристаллов в облаках, облачность, количество дождя, снега, града, который падает на землю, и даже помогает изоляции от солнечного излучения.

Учитывая объем ядер в атмосфере и температуру, при которой они функционируют, Christner сделал вывод, что «биологические ядра могут играть роль в гидрологическом цикле Земли и радиационном балансе».

Микроорганизмы полностью заселили нашу планету. Они есть везде – в воде, на суше, в воздухе, им не страшны высокие и низкие температуры, не критично наличие или отсутствие кислорода или света, высокие концентрации солей или кислот. Бактерии выживают везде. И все же если вода и почва как среда обитания являются наиболее благоприятными, то вирусы и бактерии в воздухе живут очень недолго.

Как бактерии оказываются в воздухе

Если в почве и воде бактерии обитают, то в воздушном пространстве они присутствуют. Эта среда не способна обеспечить нормальную жизнедеятельность микроорганизмам, так как не содержит питательных веществ, а УФ-излучение Солнца зачастую приводит к гибели бактерий.

Движением воздуха с поверхности поднимаются пыль и микроскопические частички вещества вместе с содержащимися на них микроорганизмами – именно таким образом бактерии оказываются в воздухе. Они перемещаются воздушными потоками и со временем оседают на землю.

Так как микробы поднимаются с поверхности, то бактериальная обсемененность воздушного пространства как качественно, так и количественно напрямую зависит от микробиологической насыщенности поверхностного слоя.

Чем выше от поверхности планеты расположен воздушный слой, тем меньше в нем содержится микроорганизмов. Но они есть. Бактерии в воздушном пространстве обнаружили даже в стратосфере, на высоте более 23 км от поверхности, где воздушный слой чрезвычайно разрежен, а воздействие космических лучей весьма жесткое и не сдерживается атмосферой.

Бактериальная проба на высоте 500 м над поверхностью в большом городе количественно в тысячи раз выше, чем проба воздуха в высокогорном районе или над водной поверхностью вдали от берегов.

Какие бактерии могут быть в воздухе

Так как в воздушном пространстве бактерии не живут, а лишь переносятся потоками ветра, говорить о каких-то типичных представителях бактерий не приходится.

В воздухе могут оказаться самые различные виды бактерий, которые по-разному реагируют на пребывание в такой неблагоприятной для них среде:

  • не выдерживают обезвоживания и быстро погибают;
  • переходят в фазу спор и месяцами пережидают критические для жизнедеятельности условия.

Для человека существенным является наличие в воздухе патогенных микроорганизмов, среди которых:

  • чумная палочка (возбудитель бубонной и септической чумы, чумной пневмонии);
  • бактерии Борде-Жангу (возбудитель коклюша);
  • палочка Коха (возбудитель туберкулеза);
  • холерный вибрион (возбудитель холеры).

Почти все из перечисленных бактерий, попадая в воздушную среду, достаточно быстро погибают, однако есть и такие, как палочка Коха (туберкулез), кислотоустойчивая спорообразующая бактерия, которая даже в сухой пыли остается жизнеспособной до 3 месяцев.

Наличие в воздушной среде возбудителей инфекционных заболеваний увеличивает риск заражения отдельного человека, а также возникновения эпидемии, когда заражению подвергается значительная группа людей.

Бактерии могут передаваться не только с сухими частицами по ветру

Когда больной кашляет или чихает, в воздух попадают выделяемые им капельки мокроты, содержащие большое количество бактерий-возбудителей заболевания. При попадании на здорового человека капельки мокроты, содержащие патогенные бактерии, с большой вероятностью вызовут инфицирование. Данный способ передачи инфекционных заболеваний называют воздушно-капельным.

К патогенным бактериям, вызывающим инфекционные заболевания и передающимся практически только воздушным путем, относятся:

  • грипп;
  • скарлатина;
  • оспа;
  • дифтерия;
  • корь;
  • туберкулез.

Различие бактериального состава воздуха

Закономерно, что воздух в различных местах имеет свои особенности, зависящие от многих факторов. Если это закрытое помещение, то большое значение на уровень обсемененности пространства бактериями оказывают следующие факторы:

  • специфика использования помещения – это может быть спальня, рабочая зона, фармлаборатория и т.д.;
  • проведение проветриваний;
  • соблюдение санитарно-гигиенических норм в помещении;
  • плановое проведение мероприятий по очистке воздуха помещения от бактерий.

Бактериальная обсемененность в местах, связанных с длительным пребыванием больших масс людей, таких как вокзалы, станции и вагоны метро, больницы, детские сады и т.д., характеризуется наиболее высокими показателями.

Как оценка уровня количества и состава бактерий используются санитарно-гигиенические нормы, применимые для любых закрытых помещений:

  • квартир;
  • рабочих зон;
  • медицинских стационаров;
  • любых мест общественного пользования.

Для воздуха в закрытых помещениях санитарно-показательными микроорганизмами принято считать зеленящие стрептококки и стафилококки, а наличие в пробе гемолитических стрептококков указывает на угрозу возникновения эпидемии.

Количественный и качественный бактериологический состав воздушных масс как под открытым небом, так и в закрытых помещениях (квартирах, рабочих зонах и др.) не является статической величиной, а изменяется в зависимости от времени года, с минимальными значениями зимой и максимальными показателями летом.

Чистоту воздуха оценивают согласно СанПин 2.1.3.1375-03 по определяемому в объеме воздуха количеству микроорганизмов, чаще всего проба привязывается к 1 м 3 исследуемого воздуха.

Методы очищения воздуха от микробов

Согласно проведенным исследованиям, воздух в квартирах или рабочих зонах в разы грязнее и токсичнее, чем на улице. Это связано с наличием в воздухе, помимо микробов, вирусов, плесени и спор грибков, домашней или промышленной пыли, шерсти домашних животных, табачного дыма, летучих химических соединений (мебель, напольные покрытия, бытовая химия и т.п.) и многого другого.

Для очистки воздуха от бактерий можно применять различные методы, но в первую очередь необходимо избавиться от грязи и пыли – именно с ними микроорганизмы попадают в воздух .

Влажная уборка и пылесос как методы очистки воздуха

Домашняя и производственная пыль на организм человека воздействует как сильный аллерген; при малейшем движении воздух она перемещается с места на место, а вместе с ней и бактерии.

Самый надежный способ избавиться от пыли и содержащихся в ней бактерий – провести влажную уборку с применением дезинфицирующих средств. Причем эту процедуру необходимо проводить регулярно.

Удалить пыль с поверхностей можно пылесосом – они довольно хорошо очищают полы и напольные покрытия. Однако нет гарантии полного удаления слежавшейся пыли, большего уровня чистоты позволяет добиться современный моющий пылесос с НЕРА-фильтрами.

Ковровые покрытия, лежащие в квартирах, следует выносить на улицу и выбивать – это давно известный способ избавиться от накапливающейся пыли.

Проветривание для очищения воздуха

Действенным методом очистки воздуха от пыли и бактерий как в квартирах, так и в рабочих зонах является проветривание помещения. Наиболее эффективно его проводить рано утром и поздно вечером (в домашних условиях – перед сном).

Воздухоочистители

Эти приборы предназначены для очистки воздуха в жилых помещениях и рабочих зонах от примесей, загрязняющих воздух. Применяется метод фильтрации, когда содержащаяся в воздухе пыль, вредные вещества и бактерии остаются на фильтре.

Качество очистки воздуха напрямую зависит от типа используемого фильтра.

Фильтры воздухоочистителя подразделяют:

  • механические – удаляют из воздуха лишь крупные по размеру загрязнения;
  • угольные – достаточно эффективны, но не могут использоваться для очистки воздуха при высокой влажности;
  • НЕРА-фильтры – современные высокоэффективные фильтры; задерживают все примеси, включая бактерии и их споры; как дополнительный плюс – увлажняют воздух в помещении.

Увлажнители

Помимо чистоты, воздух должен обладать определенным уровнем влажности – при сухом воздухе в жилых помещениях и рабочих зонах влага с кожных покровов будет насыщать воздух. Что закономерно привет к пересыханию кожи и слизистых оболочек, образованию микротрещин, что снизит противобактериальную и противовирусную устойчивость организма.

Оптимальным уровнем влажности воздуха в помещении является интервал 35-50%:

  • для человека – наиболее комфортная влажность;
  • для бактерий – зона угнетения развития.

Для поддержания в рабочих зонах и местах проживания оптимального уровня влажности используют увлажнители.

В зависимости от типа увлажнители бывают:

  • ультразвуковые;
  • традиционные;
  • прямого распыления;
  • парогенераторы.

Чтобы решить, какой именно увлажнитель использовать в каждом конкретном случае, следует знать их достоинства и недостатки.

Краткий обзор характеристик увлажнителей

1.Ультразвуковые увлажнители.

Плюсы: экономичные по стоимости и энергозатратам, при работе создают незначительный шум (вентилятор).

Минусы: использование дистиллята; нет автоматического долива воды; угроза развития в емкости микрофлоры (чаще всего – легионелл) с последующим выбросом ее в воздух, необходимость регулярной дезинфекции емкости; короткий срок службы.

2 .Традиционные – увлажнители холодного испарения.

Плюсы: низкая стоимость, очищает воздух помещения, используется водопроводная вода.

Минусы: работает шумно, требует регулярной чистки и дезинфекции, опасность развития патогенной микрофлоры и попадания ее в воздух помещения, высокий износ.

3. Увлажнители прямого распыления.

Оборудование высокого класса, практически лишенное недостатков. Из минусов можно отметить высокую стоимость и необходимость профессионального монтажа.

4. Увлажнители – генераторы пара.

Плюсы: средняя стоимость, дезинфекция воды кипячением.

Минусы: очень энергоемки, большие габариты, шумные в работе, требуют частого обслуживания, прямой выход пара является потенциальной опасностью.

Увлажнители любого типа решают задачу очистки воздуха от пыли и бактерий в рабочей зоне или жилом помещении, следует только определить, сколько и какие именно увлажнители являются оптимальными в конкретном случае.

Роль зеленых насаждений

Чем чище воздух в местах общественного и личного пользования, тем меньше он содержит различных бактерий, в том числе и патогенных.

Значение зеленых насаждений при очистке воздуха невозможно переоценить – растения осаждают пыль, а выделяемые ими фитонциды убивают микробов.

Растения в квартире

Комнатные растения в жилых и рабочих зонах выполняют функцию биологического фильтра – поглощают вредные вещества из воздуха, собирают пыль на листьях, увлажняют воздух, выделяют кислород и фитонциды, убивающие патогенные бактерии.

Распространенные растения-антисептики для домашней очистки воздуха:

  • герань;
  • алое;
  • бегония;
  • мирт;
  • розмарин.

Средний радиус антибактериального воздействия растения составляет около 3 м, кроме этого, растения дезодорируют воздух и обладают тонизирующим эффектом.

Уличные растения очищают воздух

Деревья и кустарники под открытым небом постоянно проводят очистку воздушного пространства как от механических примесей и токсинов, так и от болезнетворных микроорганизмов. Растения выделяют летучие фитонциды, убивающие бактерии.

Jpg" alt="девушка на фоне природы" width="400" height="225" srcset="" data-srcset="https://probakterii.ru/wp-content/uploads/2015/10/bakterii-coli-v-moche2-400x225..jpg 600w" sizes="(max-width: 400px) 100vw, 400px">

Почему вы решили заняться изучением жизни в атмосфере?

Это последняя неизученная экосистема на планете. В XXI веке осталось совсем мало неизученных сред. Кроме того, в мире было лишь несколько ученых, которые занимались этим вопросом, так что там есть еще огромное поле для работы.

Как вы начали изучать жизнь в верхних слоях атмосферы?

В 2008 году мы использовали для этого самый высотный самолет NASA, он летает так высоко, что пилот вынужден облачаться в космический скафандр. Раньше это был разведывательный самолет U-2. Вы, наверное, знаете, что когда наши страны не «очень» дружили, эти самолеты летали над СССР и Кубой, снимая ракетные установки. Они летали так высоко, что никто не мог обнаружить их при помощи радара.

Не то чтобы совсем никто не мог... Как эти самолеты оказались у вас?

После холодной войны самолеты остались у военных, и они не знали, что с ними делать. Теперь самолеты получили название ER-2, они используются для науки, и это здорово! Ловушка для пыли закреплена на конце крыла, поэтому она не подвергается воздействию со стороны фюзеляжа и ловит пыль непосредственно из набегающего потока воздуха. В 2008 году на этом самолете мы собирали образцы пыли на высоте 20 километров над Тихим океаном. Затем выращивали микроорганизмы, собранные вместе с пылью.

Почему именно над Тихим океаном?

Мы хотели избежать влияния земной поверхности и не загрязнять образцы местной пылью. Над Тихим океаном ее летает не так много, как над континентом. И кроме того, было интересно изучить воздух, который приходит к нам через океан из Азии. Весной там преобладают ветры, которые дуют из Азии в Северную Америку. Пролетая сквозь этот поток, мы узнали, откуда конкретно к нам приходит воздух. Давно известно, что гарь от лесных пожаров, в том числе российских, и выбросы от сжигания угля в Китае пересекают Тихий океан. Но никто раньше не пытался изучить микроорганизмы, путешествующие с этими загрязнителями. Мы впервые доказали наличие живых клеток в стратосфере, выяснили, что они перелетают океан в экстремальных условиях, и это значительное достижение. Если они существуют на высоте 20 километров, почему бы им не быть выше?

Когда люди стали задумываться о присутствии микробов в воздухе?

О них знали задолго до того, как стало понятно, что эти существа, собственно, из себя представляют. Тысячи лет люди знали о летающих в воздухе дрожжах, которые мы используем при приготовлении хлеба и алкоголя. Однако настоящим вызовом стали попытки сбора образцов атмосферы, ведь концентрации в ней микробов ничтожны. Чарлз Дарвин собирал пыль с парусов корабля «Бигль» в тридцатых годах девятнадцатого века. Спустя 150 лет в тех образцах обнаружили микроорганизмы.

В 1862 году Луи Пастер открыл одноклеточных микробов, живущих в воздухе, которые быстро умирают от высокой температуры. Его нехитрые эксперименты с бульоном показали, что любая питательная среда, оставленная на открытом воздухе, постепенно заселяется колониями клеток. Это самый простой способ узнать, какие организмы обитают в воздухе, — попытаться поймать и вырастить их. Мы используем крахмальный агар или простые сахара, и если клетке эта среда нравится, она начинает питаться, расти, делиться, и вскоре мы видим миллионы и миллиарды однотипных микроорганизмов. И для этого нам необходима всего одна жизнеспособная клетка. Метод применяется до сих пор, но мы понимаем, что он выявляет лишь порядка одного процента микробов. Если в питательной среде оказались мертвые организмы, вырастить их таким образом уже не удастся. Поэтому метод позволяет увидеть лишь вершину айсберга.

Какие эксперименты по поиску жизни в атмосфере проводились в XX веке?

Большинство экспериментов в начале XX века было сделано при помощи самолетов. Еще пионер авиации Чарлз Линдберг, перелетая океан, собирал образцы пыли. В них он искал жизнеспособных микробов. В конце семидесятых годов советские ученые под руководством Александра Имшенецкого провели ракетные эксперименты на больших высотах. Ракета в опытах Имшенецкого поднималась до мезосферы на 77 километров и в ходе спуска собирала образцы воздуха. По мере падения ракеты удалось собрать образцы грибов (например, Circinella muscae, Aspergillus niger, Papulaspora anomala). 77 километров по сей день остается самой большой высотой, с которой на Землю вернулись жизнеспособные организмы. Чуть позднее, в восьмидесятые годы, группа британцев запускала высотные аэростаты. Преимущество их перед ракетами заключалось в способности зависать и собирать пробы в течение долгого времени. На высотах от 20 и до 50 километров также были найдены жизнеспособные организмы.

Насколько можно доверять тем результатам?

За последние 10 лет в микробиологии свершилась настоящая революция. Сегодня у нас есть изощренные техники описания микробов и, что еще важнее, мы можем более тщательно следить за тем, чтобы не собирать микроорганизмы случайно с инструментов или нашего тела. Теперь мы знаем, как много микробов живет внутри и на поверхности нашего тела, и это совсем недавнее открытие. Не думаю, что ученые, которые начинали изучать верхние слои атмосферы, уделяли необходимое внимание возможности загрязнения. Они не только были не в состоянии обнаруживать многие виды, но и, скорее всего, сами загрязняли свои образцы. По этому прежние результаты вызывают у меня сомнения: ученые не объяснили, как сохраняли чистоту инструментов, как защищали их от сбора клеток по пути вверх и вниз.

Чем же отличается ваш опыт с самолетом?

Мы могли осуществлять строгий контроль сбора. И самое главное — пылесборники не открывались, пока самолет не набирал высоту 20 километров. По сравнению с прошлыми экспериментами, когда мы не могли быть уверены, откуда взяты образцы, это улучшенный подход. Подобно Луи Пастеру, выделить мы могли только живые организмы, помещая их в питательную среду. Мы выделили несколько микроорганизмов, которые встречаются и на поверхностях предметов, и в почве. Вероятно, мы собрали и сотни других видов микроорганизмов, но, скорее всего, все они были мертвы, кроме бацилл — ведь они образуют споры и выживают в экстремальных условиях.

Какой практический смысл в знании, кто живет в верхних и нижних слоях атмосферы?

Для формирования облаков, снежинок и капель дождя нужны ядра. Как выяснилось, такими ядрами могут служить микроорганизмы, например бактерии, размером 1-3 микрона. Поэтому важно знать, где и как перемещаются микробы, участвующие в формировании осадков. Ученые из Монтаны исследовали градинки и выяснили, что порядка 30 процентов из них образованы вокруг микроорганизмов.

А остальные 70 процентов?

Остальные — всевозможные твердые частицы: пылинки, пепел, различные выбросы, связанные с деятельностью человека. Думаю, атмосфера играет важную роль в эволюции и экологии микроорганизмов. Высокий уровень ультрафиолетового излучения может вызывать мутации и даже образование новых видов!

Микроорганизмы могут передвигаться сами по себе?

Конечно! К примеру, так перемещаются споры грибов. Их репродуктивная стратегия — использование ветра для распыления спор без участия пыли.

В каких условиях пребывают микроорганизмы в верхних слоях атмосферы?

Живым организмам необходима вода. Верхние слои атмосферы, безусловно, чрезвычайно сухое место. Кроме того, там особенно велико ионизирующее излучение. Большая часть озонового слоя находится между 18 и 40 километрами и предохраняет все живое на Земле от ультрафиолетового излучения. Еще один экстремальный фактор — это низкие температуры. На 20 километрах, у нижней границы стратосферы, где летел наш самолет, температура опускалась до -100 °С. И последний фактор — очень низкое давление. Большинство земных организмов испытывают давление в одну атмосферу. Известно, что живые клетки, помещенные в камеру, из которой откачали воздух, прекращают расти.

Какие внутренние механизмы помогают микробам выживать в этих условиях?

Многие микробы, оказавшись в таких условиях, образуют споры, теряя воду и объем. Клетка становится крепостью, в которой клеточная мембрана предохраняет такие важные части, как ДНК.

Почему жизнью в атмосфере заинтересовались в NASA?

Это расширяет наши представления о том, где в Солнечной системе и Вселенной может существовать жизнь. Интересно наблюдать, как жизнь противостоит суровым условиям, поскольку, взглянув на Солнечную систему, мы видим, что условия на большинстве планет довольно жесткие. Поэтому если мы можем найти формы жизни, обитающие в экстремальных режимах на Земле, мы можем говорить о том, какие виды могут, в принципе, обитать на других планетах. И отправившись к другим мирам, например на Марс, мы будем знать, какие формы жизни нам стоит там искать и каким способом.

Как вы охотитесь за микробами сейчас?

Недостаток ракет и самолетов — ограниченное время для эксперимента. Собирать пробы постоянно мы можем только в горной обсерватории. Эта обсерватория Bachelor находится на высоте 2700 метров выше уровня моря на вершине потухшего вулкана в горах штата Орегон. Мощные насосы позволяют собирать пробы воздуха непрерывно. Мы выбрали эту обсерваторию для поиска микроорганизмов, так как на такой высоте приборы не подвержены загрязнению с поверхности Земли.

Вы освоили и новый метод сбора?

Теперь, собирая огромные объемы воздуха, мы стали получать достаточно клеток, чтобы использовать более тонкие методы. Один из них — ПЦР (метод полимеразной цепной реакции) — состоит в получении большого количества клеток, из которых выделяются молекулы ДНК, а ДНК копируется в лаборатории. Кроме того, мы используем и другие методы, например так называемые ДНК-микрочипы, и изучаем последовательности этих ДНК. Прелесть метода в том, что мы можем получить ДНК мертвых организмов. Именно так мы впервые смогли обнаружить более 2000 видов микроорганизмов в образцах!

Среди них были неизвестные?

Нет, все это уже известные науке виды. ДНКмикрочипы сделаны на основе уже известных последовательностей, поэтому наш метод не позволяет обнаружить неизвестные виды. Из 60 000 видов, на основе которых выполнены микрочипы, мы смогли обнаружить более 2000. Это говорит о том, как много мы пропускали ранее.

А ранее в атмосфере находили неизвестные виды?

Индийские ученые запускали аэростат на высоту 50 километров. Они считали, что обнаружили новый вид микробов, залетевших из космоса. Но это бессмыслица, нелепость. Ведь эти виды используют те же молекулы, что и земные организмы. Самое простое объяснение состоит в том, что эти популяции существуют в наземных или водных экосистемах, но пока не обнаружены. В наших работах и работах Имшенецкого (1978) и Лысенко (1980) всегда прослеживалась строгая генетическая связь между организмами, собранными в воздухе, и теми, что живут на поверхности земли и воды.

Есть ли среди найденных микробов болезнетворные или вызывающие аллергию?

Большинство из них не являются патогенными, они безвредны. А некоторые даже весьма полезны. Я не думаю, что стоит беспокоиться о возможности перемещения патогенных микробов в атмосфере, так как большинство их погибает. Однако мы собрали некоторые грибки, которые ассоциированы с заболеваниями сельскохозяйственных культур. Перенос болезней по воздуху вполне реален. Науке известны случаи, когда вирусы разносились на большие расстояния, например через пролив Ла-Манш. Вирусы по численности превосходят бактерии, они более подвержены ионизирующему излучению, но могут находиться внутри бактерий и переноситься ими. В дальнейшем будет очень интересно искать их в наших образцах воздуха.

Как микробы попадают в атмосферу?

Поскольку большинство клеток прикрепляется к пылинкам, то главный фактор — пылевые бури. Это может происходить во время ураганов, гроз, муссонов. Еще один интересный факт, который мы выявили, — обилие морских микроорганизмов, которые попадают в атмосферу при всплеске волн.

Как вы определяете родину микробов?

Основные источники — пустыни (например, Гоби, Такла-Макан), океаны, а также лесные пожары. Еще один источник, который мы обнаружили — городские станции очистки сточных вод. Происхождение частиц мы определяем, используя методы геохимии. К примеру, уголь, сжигаемый в Азии, привносит характерные следы в частички гари. Такие пылинки имеют конечное время существования в атмосфере, и, измеряя их концентрацию в Северной Америке, мы можем узнать, как давно они были выброшены. Из Китая, например, пепел доходит до США за неделю. Некоторые виды пыли заносятся исключительно из пустынь или с вулканов, из лесных экосистем или городов.

Кстати, в нашем исследовании мы обнаружили бактерии, которые встречаются только у берегов Японии. Они живут в районах выхода гидротермальных вод на дне океана. Оказавшись на поверхности, эти бактерии уносятся ветрами и достигают Северной Америки. Изучая ДНК микробов, биологи выстраивают последовательность всех нуклеотидов и, сравнивая их с базой данных, узнают тип среды и даже место на планете, где они обитают. Если разные методы приводят нас к одним и тем же выводам, это здорово!

А к вам прилетают постоянные «гости» из России?

Да. К примеру, Amphibacillus tropicus ранее находили только в России. Вообще, мы ловим довольно много пепла от сибирских лесных пожаров. И с ним прилетает много ваших микробов.

Как далеко и долго могут путешествовать микробы?

Они перемещаются на огромные расстояния, примером самых дальних перелетов может служить перенос через Тихий океан. Клетки в нижних слоях атмосферы быстро возвращаются на землю благодаря осадкам и под действием силы тяжести. Но если микроорганизмы заносятся ветром в верхние слои, вернуться уже сложно, и они могут неделями, месяцами и даже годами летать вокруг света. Я думаю, мы близки к тому, чтобы назвать атмосферу экосистемой.

Каким будет следующий этап в этих исследованиях?

Мы не можем судить о жизни в атмосфере, имея только одну обсерваторию в США. Для нас очень важно, чтобы ученые по всему миру начали заниматься сборами воздуха, и мы могли бы сравнивать наши результаты. На основе наших методик можно разработать единый стандарт — одинаковые насосы и фильтры для сбора клеток. Ставшие универсальными ПЦР и ДНК-микрочипы уже считаются стандартными инструментами. Нужны такие же станции в Европе, России, Азии, Южной Америке, Австралии. Нам нужна всемирная сеть.